ESWC

#NeuralNetwork#MachineLearning#GraphBased#Pocket#GraphConvolutionalNetwork
Issue Date: 2019-05-31 Modeling Relational Data with Graph Convolutional Networks, Michael Schlichtkrull+, N_A, ESWC18 Summary知識グラフは不完全な情報を含んでいるため、関係グラフ畳み込みネットワーク(R-GCNs)を使用して知識ベース補完タスクを行う。R-GCNsは、高度な多関係データに対処するために開発されたニューラルネットワークであり、エンティティ分類とリンク予測の両方で効果的であることを示している。さらに、エンコーダーモデルを使用してリンク予測の改善を行い、大幅な性能向上が見られた。