Encoder-Decoder
#NeuralNetwork
#EfficiencyImprovement
#Pocket
#NLP
#AutomaticSpeechRecognition(ASR)
#EMNLP
Issue Date: 2025-08-22 [Paper Note] LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation, Keisuke Kamahori+, EMNLP'25 SummaryLiteASRは、現代の自動音声認識モデルのエンコーダを低ランク圧縮する手法で、推論コストを大幅に削減しつつ転写精度を維持します。主成分分析を用いて低ランク行列の乗算を近似し、自己注意機構を最適化することで、Whisper large-v3のエンコーダサイズを50%以上圧縮し、Whisper mediumと同等のサイズでより良い転写精度を実現しました。 Comment元ポスト:https://x.com/keisukekamahori/status/1958695752810864754?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q現代のASRモデルはencoderが計算効率の上でボトルネックとなっていたが、Forward Passにおける activatrion Y を PCA (式2, 3)に基づいて2つの低ランク行列の積(とバイアス項の加算; 式5)によって近似し計算効率を大幅に向上させた、という話な模様。weightを低ランクに写像するV_kとバイアス項のY_M(データセット全体に対するactivation Yの平均)はcalibrfationデータによって事前に計算可能とのこと。また、PCAのrank kがattention headの次元数より小さい場合、self-attentionの計算もより(QWKへ写像するWを低ランク行列で近似することで)効率的な手法を採用でき、そちらについても提案されている模様。(ざっくりしか読めていないので誤りがあるかもしれない。)
#ComputerVision
#Pocket
#Transformer
#ReinforcementLearning
#TextToImageGeneration
#GRPO
#On-Policy
Issue Date: 2025-08-12 [Paper Note] AR-GRPO: Training Autoregressive Image Generation Models via Reinforcement Learning, Shihao Yuan+, arXiv'25 SummaryAR-GRPOは、自己回帰画像生成モデルにオンライン強化学習を統合した新しいアプローチで、生成画像の品質を向上させるためにGRPOアルゴリズムを適用。クラス条件およびテキスト条件の画像生成タスクで実験を行い、標準のARモデルと比較して品質と人間の好みを大幅に改善した。結果は、AR画像生成における強化学習の有効性を示し、高品質な画像合成の新たな可能性を開く。 Comment元ポスト:https://x.com/iscienceluvr/status/1955234358136373421?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連:
・2456 #ComputerVision #Pretraining #Pocket #NLP #Transformer #InstructionTuning #MultiModal #SpeechProcessing #CVPR #Robotics
Issue Date: 2023-12-29 Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action, Jiasen Lu+, N_A, CVPR'24 SummaryUnified-IO 2は、最初の自己回帰型のマルチモーダルモデルであり、画像、テキスト、音声、アクションを理解し生成することができます。異なるモダリティを統一するために、共有の意味空間に入力と出力を配置し、単一のエンコーダ・デコーダトランスフォーマーモデルで処理します。さまざまなアーキテクチャの改善を提案し、大規模なマルチモーダルな事前トレーニングコーパスを使用してモデルをトレーニングします。Unified-IO 2は、GRITベンチマークを含む35以上のベンチマークで最先端のパフォーマンスを発揮します。 Comment画像、テキスト、音声、アクションを理解できる初めてのautoregressive model。AllenAIモデルのアーキテクチャ図
マルチモーダルに拡張したことで、訓練が非常に不安定になったため、アーキテクチャ上でいくつかの工夫を加えている:
・2D Rotary Embedding
・Positional EncodingとしてRoPEを採用
・画像のような2次元データのモダリティの場合はRoPEを2次元に拡張する。具体的には、位置(i, j)のトークンについては、Q, Kのembeddingを半分に分割して、それぞれに対して独立にi, jのRoPE Embeddingを適用することでi, j双方の情報を組み込む。
・QK Normalization
・image, audioのモダリティを組み込むことでMHAのlogitsが非常に大きくなりatteetion weightが0/1の極端な値をとるようになり訓練の不安定さにつながった。このため、dot product attentionを適用する前にLayerNormを組み込んだ。
・Scaled Cosine Attention
・Image Historyモダリティにおいて固定長のEmbeddingを得るためにPerceiver Resamplerを扱ったているが、こちらも上記と同様にAttentionのlogitsが極端に大きくなったため、cosine類似度をベースとしたScaled Cosine Attention 2259 を利用することで、大幅に訓練の安定性が改善された。
・その他
・attention logitsにはfp32を適用
・事前学習されたViTとASTを同時に更新すると不安定につながったため、事前学習の段階ではfreezeし、instruction tuningの最後にfinetuningを実施
目的関数としては、Mixture of Denoisers (1424)に着想を得て、Multimodal Mixture of Denoisersを提案。MoDでは、
・\[R\]: 通常のspan corruption (1--5 token程度のspanをmaskする)
・\[S\]: causal language modeling (inputを2つのサブシーケンスに分割し、前方から後方を予測する。前方部分はBi-directionalでも可)
・\[X\]: extreme span corruption (12>=token程度のspanをmaskする)
の3種類が提案されており、モダリティごとにこれらを使い分ける:
・text modality: UL2 (1424)を踏襲
・image, audioがtargetの場合: 2つの類似したパラダイムを定義し利用
・\[R\]: patchをランダムにx%マスクしre-constructする
・\[S\]: inputのtargetとは異なるモダリティのみの情報から、targetモダリティを生成する
訓練時には prefixとしてmodality token \[Text\], \[Image\], \[Audio\] とparadigm token \[R\], \[S\], \[X\] をタスクを指示するトークンとして利用している。また、image, audioのマスク部分のdenoisingをautoregressive modelで実施する際には普通にやるとdecoder側でリークが発生する(a)。これを防ぐには、Encoder側でマスクされているトークンを、Decoder側でteacher-forcingする際にの全てマスクする方法(b)があるが、この場合、生成タスクとdenoisingタスクが相互に干渉してしまいうまく学習できなくなってしまう(生成タスクでは通常Decoderのinputとして[mask]が入力され次トークンを生成する、といったことは起きえないが、愚直に(b)をやるとそうなってしまう)。ので、(c)に示したように、マスクされているトークンをinputとして生成しなければならない時だけ、マスクを解除してdecoder側にinputする、という方法 (Dynamic Masking) でこの問題に対処している。
Issue Date: 2025-08-22 [Paper Note] LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation, Keisuke Kamahori+, EMNLP'25 SummaryLiteASRは、現代の自動音声認識モデルのエンコーダを低ランク圧縮する手法で、推論コストを大幅に削減しつつ転写精度を維持します。主成分分析を用いて低ランク行列の乗算を近似し、自己注意機構を最適化することで、Whisper large-v3のエンコーダサイズを50%以上圧縮し、Whisper mediumと同等のサイズでより良い転写精度を実現しました。 Comment元ポスト:https://x.com/keisukekamahori/status/1958695752810864754?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q現代のASRモデルはencoderが計算効率の上でボトルネックとなっていたが、Forward Passにおける activatrion Y を PCA (式2, 3)に基づいて2つの低ランク行列の積(とバイアス項の加算; 式5)によって近似し計算効率を大幅に向上させた、という話な模様。weightを低ランクに写像するV_kとバイアス項のY_M(データセット全体に対するactivation Yの平均)はcalibrfationデータによって事前に計算可能とのこと。また、PCAのrank kがattention headの次元数より小さい場合、self-attentionの計算もより(QWKへ写像するWを低ランク行列で近似することで)効率的な手法を採用でき、そちらについても提案されている模様。(ざっくりしか読めていないので誤りがあるかもしれない。)
Issue Date: 2025-08-12 [Paper Note] AR-GRPO: Training Autoregressive Image Generation Models via Reinforcement Learning, Shihao Yuan+, arXiv'25 SummaryAR-GRPOは、自己回帰画像生成モデルにオンライン強化学習を統合した新しいアプローチで、生成画像の品質を向上させるためにGRPOアルゴリズムを適用。クラス条件およびテキスト条件の画像生成タスクで実験を行い、標準のARモデルと比較して品質と人間の好みを大幅に改善した。結果は、AR画像生成における強化学習の有効性を示し、高品質な画像合成の新たな可能性を開く。 Comment元ポスト:https://x.com/iscienceluvr/status/1955234358136373421?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連:
・2456 #ComputerVision #Pretraining #Pocket #NLP #Transformer #InstructionTuning #MultiModal #SpeechProcessing #CVPR #Robotics
Issue Date: 2023-12-29 Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action, Jiasen Lu+, N_A, CVPR'24 SummaryUnified-IO 2は、最初の自己回帰型のマルチモーダルモデルであり、画像、テキスト、音声、アクションを理解し生成することができます。異なるモダリティを統一するために、共有の意味空間に入力と出力を配置し、単一のエンコーダ・デコーダトランスフォーマーモデルで処理します。さまざまなアーキテクチャの改善を提案し、大規模なマルチモーダルな事前トレーニングコーパスを使用してモデルをトレーニングします。Unified-IO 2は、GRITベンチマークを含む35以上のベンチマークで最先端のパフォーマンスを発揮します。 Comment画像、テキスト、音声、アクションを理解できる初めてのautoregressive model。AllenAIモデルのアーキテクチャ図
マルチモーダルに拡張したことで、訓練が非常に不安定になったため、アーキテクチャ上でいくつかの工夫を加えている:
・2D Rotary Embedding
・Positional EncodingとしてRoPEを採用
・画像のような2次元データのモダリティの場合はRoPEを2次元に拡張する。具体的には、位置(i, j)のトークンについては、Q, Kのembeddingを半分に分割して、それぞれに対して独立にi, jのRoPE Embeddingを適用することでi, j双方の情報を組み込む。
・QK Normalization
・image, audioのモダリティを組み込むことでMHAのlogitsが非常に大きくなりatteetion weightが0/1の極端な値をとるようになり訓練の不安定さにつながった。このため、dot product attentionを適用する前にLayerNormを組み込んだ。
・Scaled Cosine Attention
・Image Historyモダリティにおいて固定長のEmbeddingを得るためにPerceiver Resamplerを扱ったているが、こちらも上記と同様にAttentionのlogitsが極端に大きくなったため、cosine類似度をベースとしたScaled Cosine Attention 2259 を利用することで、大幅に訓練の安定性が改善された。
・その他
・attention logitsにはfp32を適用
・事前学習されたViTとASTを同時に更新すると不安定につながったため、事前学習の段階ではfreezeし、instruction tuningの最後にfinetuningを実施
・\[R\]: 通常のspan corruption (1--5 token程度のspanをmaskする)
・\[S\]: causal language modeling (inputを2つのサブシーケンスに分割し、前方から後方を予測する。前方部分はBi-directionalでも可)
・\[X\]: extreme span corruption (12>=token程度のspanをmaskする)
の3種類が提案されており、モダリティごとにこれらを使い分ける:
・text modality: UL2 (1424)を踏襲
・image, audioがtargetの場合: 2つの類似したパラダイムを定義し利用
・\[R\]: patchをランダムにx%マスクしre-constructする
・\[S\]: inputのtargetとは異なるモダリティのみの情報から、targetモダリティを生成する
訓練時には prefixとしてmodality token \[Text\], \[Image\], \[Audio\] とparadigm token \[R\], \[S\], \[X\] をタスクを指示するトークンとして利用している。また、image, audioのマスク部分のdenoisingをautoregressive modelで実施する際には普通にやるとdecoder側でリークが発生する(a)。これを防ぐには、Encoder側でマスクされているトークンを、Decoder側でteacher-forcingする際にの全てマスクする方法(b)があるが、この場合、生成タスクとdenoisingタスクが相互に干渉してしまいうまく学習できなくなってしまう(生成タスクでは通常Decoderのinputとして[mask]が入力され次トークンを生成する、といったことは起きえないが、愚直に(b)をやるとそうなってしまう)。ので、(c)に示したように、マスクされているトークンをinputとして生成しなければならない時だけ、マスクを解除してdecoder側にinputする、という方法 (Dynamic Masking) でこの問題に対処している。
#RecommenderSystems
#Pocket
#Transformer
#VariationalAutoEncoder
#NeurIPS
#read-later
#Admin'sPick
#ColdStart
#SemanticID
Issue Date: 2025-07-28
[Paper Note] Recommender Systems with Generative Retrieval, Shashank Rajput+, NeurIPS'23
Summary新しい生成的検索アプローチを提案し、アイテムのセマンティックIDを用いて次のアイテムを予測するTransformerベースのモデルを訓練。これにより、従来のレコメンダーシステムを大幅に上回る性能を達成し、過去の対話履歴がないアイテムに対しても改善された検索性能を示す。
Commentopenreview:https://openreview.net/forum?id=BJ0fQUU32wSemantic IDを提案した研究アイテムを意味的な情報を保持したdiscrete tokenのタプル(=Semantic ID)で表現し、encoder-decoderでNext ItemのSemantic IDを生成するタスクに落としこむことで推薦する。SemanticIDの作成方法は後で読んで理解したい。
#Pocket
#Transformer
#LongSequence
#NeurIPS
#Encoder
Issue Date: 2023-05-09
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens, Zhanpeng Zeng+, N_A, NeurIPS'23
Summary本論文では、Transformerモデルの二次コストを削減するために、各層でサイズ$r$が$n$に独立した表現に入力を圧縮する方法を提案する。VIPトークン中心の圧縮(Vcc)スキームを使用し、VIPトークンの表現を近似するために入力シーケンスを選択的に圧縮する。提案されたアルゴリズムは、競合するベースラインと比較して効率的であり、多数のタスクにおいて競争力のあるまたはより優れたパフォーマンスを発揮する。また、アルゴリズムは128Kトークンにスケーリングでき、一貫して精度の向上を提供することが示された。
#Pocket
#NLP
#Transformer
#Architecture
#Normalization
Issue Date: 2025-07-04
[Paper Note] On Layer Normalizations and Residual Connections in Transformers, Sho Takase+, arXiv'22
Summary本研究では、Transformerアーキテクチャのレイヤー正規化の位置に関するPost-LNとPre-LNの違いを調査。Post-LNは浅い層で優れた性能を示す一方、深い層では不安定なトレーニングを引き起こす消失勾配問題があることを発見。これを踏まえ、Post-LNの修正により安定したトレーニングを実現する方法を提案し、実験でPre-LNを上回る結果を示した。
CommentPre-LNの安定性を持ちながらもPost-LNのような高い性能を発揮する良いとこ取りのB2TConnectionを提案
NLP2022:https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/A2-5.pdf
#Analysis
#Pocket
#NLP
#Transformer
#Normalization
Issue Date: 2025-07-05
[Paper Note] On Layer Normalization in the Transformer Architecture, Ruibin Xiong+, arXiv'20
Summary本論文では、Transformerの学習率のウォームアップ段階の重要性を理論的に研究し、レイヤー正規化の位置が訓練の安定性に与える影響を示す。特に、Post-LN Transformerでは大きな勾配が不安定さを引き起こすため、ウォームアップが有効である一方、Pre-LN Transformerでは勾配が良好に振る舞うため、ウォームアップを省略できることを示す。実験により、ウォームアップなしのPre-LN Transformerがベースラインと同等の結果を達成し、訓練時間とハイパーパラメータの調整が削減できることを確認した。
CommentOpenReview:https://openreview.net/forum?id=B1x8anVFPrEncoder-DecoderのTransformerにおいて、Post-LNの場合は、Warmupを無くすと最終的な性能が悪化し、またWarmUpステップの値によって(500 vs. 4000で実験)も最終的な性能が変化する。これには学習時にハイパーパラメータをしっかり探索しなければならず、WarmUPを大きくすると学習効率が落ちるというデメリットがある。
Post-LNの場合は、Pre-LNと比較して勾配が大きく、Warmupのスケジュールをしっかり設計しないと大きな勾配に対して大きな学習率が適用され学習が不安定になる。これは学習率を非常に小さくし、固定値を使うことで解決できるが、収束が非常に遅くなるというデメリットがある。
一方、Pre-LNはWarmup無しでも、高い性能が達成でき、上記のようなチューニングの手間や学習効率の観点から利点がある、みたいな話の模様。
#NeuralNetwork #NaturalLanguageGeneration #NLP #Dataset #DataToTextGeneration #TabularData #ACL Issue Date: 2025-08-06 Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data, Jhamtani+, ACL'18 Commentデータセットの日本語解説(過去の自分の資料):https://speakerdeck.com/akihikowatanabe/data-to-text-datasetmatome-summary-of-data-to-text-datasets?slide=66 #Article #ComputerVision #Transformer #OpenWeight #VideoGeneration/Understandings Issue Date: 2025-08-27 Wan-S2V: Audio-Driven Cinematic Video Generation, Alibaba, 2025.08 Comment元ポスト:https://x.com/alibaba_wan/status/1960350593660367303?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連:
・2312image+Audio-to-video generationAudioモダリティ: wav2vec+AudioEncoder
Visionモダリティ: 3D VAE Encoder
Textモダリティ: T5 Encoder
モダリティ統合: DiT Block(おそらくT5 Encoderの出力を用いてprompt情報を条件付け)とAudio Block?
3D VAE Decoderでデコードというアーキテクチャ?詳細が書かれておらずよくわからない。
Post-LNの場合は、Pre-LNと比較して勾配が大きく、Warmupのスケジュールをしっかり設計しないと大きな勾配に対して大きな学習率が適用され学習が不安定になる。これは学習率を非常に小さくし、固定値を使うことで解決できるが、収束が非常に遅くなるというデメリットがある。
一方、Pre-LNはWarmup無しでも、高い性能が達成でき、上記のようなチューニングの手間や学習効率の観点から利点がある、みたいな話の模様。
#NeuralNetwork #NaturalLanguageGeneration #NLP #Dataset #DataToTextGeneration #TabularData #ACL Issue Date: 2025-08-06 Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data, Jhamtani+, ACL'18 Commentデータセットの日本語解説(過去の自分の資料):https://speakerdeck.com/akihikowatanabe/data-to-text-datasetmatome-summary-of-data-to-text-datasets?slide=66 #Article #ComputerVision #Transformer #OpenWeight #VideoGeneration/Understandings Issue Date: 2025-08-27 Wan-S2V: Audio-Driven Cinematic Video Generation, Alibaba, 2025.08 Comment元ポスト:https://x.com/alibaba_wan/status/1960350593660367303?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連:
・2312image+Audio-to-video generationAudioモダリティ: wav2vec+AudioEncoder
Visionモダリティ: 3D VAE Encoder
Textモダリティ: T5 Encoder
モダリティ統合: DiT Block(おそらくT5 Encoderの出力を用いてprompt情報を条件付け)とAudio Block?
3D VAE Decoderでデコードというアーキテクチャ?詳細が書かれておらずよくわからない。