RewardHacking

#Pocket #NLP #LanguageModel #ReinforcementLearning #Factuality #PostTraining #GRPO #On-Policy
Issue Date: 2025-08-08 [Paper Note] Learning to Reason for Factuality, Xilun Chen+, arXiv'25 SummaryR-LLMsは複雑な推論タスクで進展しているが、事実性において幻覚を多く生成する。オンラインRLを長文の事実性設定に適用する際、信頼できる検証方法が不足しているため課題がある。従来の自動評価フレームワークを用いたオフラインRLでは報酬ハッキングが発生することが判明。そこで、事実の精度、詳細レベル、関連性を考慮した新しい報酬関数を提案し、オンラインRLを適用。評価の結果、幻覚率を平均23.1ポイント削減し、回答の詳細レベルを23%向上させた。 Comment元ポスト:https://x.com/jaseweston/status/1953629692772446481?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q先行研究:
・2378Reasoning ModelのHallucination Rateは、そのベースとなるモデルよりも高い。実際、DeepSeek-V3とDeepSeek-R1,Qwen-2.5-32BとQwQ-32Bを6つのFactualityに関するベンチマークで比較すると、Reasoning Modelの方がHallucination Rateが10, 13%程度高かった。これは、現在のOn-policyのRLがlogical reasoningにフォーカスしており、Factualityを見落としているため、と仮説を立てている。
Factuality(特にLongForm)とRL alignmentsという観点から言うと、決定的、正確かつ信頼性のあるverificatlon手法は存在せず、Human Effortが必要不可欠である。
自動的にFactualityを測定するFactScoreのような手法は、DPOのようなオフラインのペアワイズのデータを作成するに留まってしまっている。また、on dataでFactualityを改善する取り組みは行われているが、long-formな応答に対して、factual reasoningを実施するにはいくつかの課題が残されている:
・reward design
・Factualityに関するrewardを単独で追加するだけだと、LLMは非常に短く、詳細を省略した応答をしPrecicionのみを高めようとしてしまう。

あとで追記する
#ComputerVision #Pretraining #Pocket #NLP #Supervised-FineTuning (SFT) #ReinforcementLearning #MulltiModal #RLHF #Reasoning #LongSequence #mid-training #PostTraining #CurriculumLearning #RLVR #Admin'sPick #VisionLanguageModel
Issue Date: 2025-07-03 [Paper Note] GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning, GLM-V Team+, arXiv'25 Summary視覚言語モデルGLM-4.1V-Thinkingを発表し、推論中心のトレーニングフレームワークを開発。強力な視覚基盤モデルを構築し、カリキュラムサンプリングを用いた強化学習で多様なタスクの能力を向上。28のベンチマークで最先端のパフォーマンスを達成し、特に難しいタスクで競争力のある結果を示す。モデルはオープンソースとして公開。 Comment元ポスト:https://x.com/sinclairwang1/status/1940331927724232712?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QQwen2.5-VLよりも性能が良いVLM
imageアーキテクチャはこちら。が、pretraining(データのフィルタリング, マルチモーダル→long context継続事前学習)->SFT(cold startへの対処, reasoning能力の獲得)->RL(RLVRとRLHFの併用によるパフォーマンス向上とAlignment, RewardHackingへの対処,curriculum sampling)など、全体の学習パイプラインの細かいテクニックの積み重ねで高い性能が獲得されていると考えられる。
image
#Pocket #NLP #LanguageModel #ReinforcementLearning
Issue Date: 2025-06-26 [Paper Note] Robust Reward Modeling via Causal Rubrics, Pragya Srivastava+, arXiv'25 Summary報酬モデル(RMs)は人間のフィードバックを通じて大規模言語モデル(LLMs)を整合させるが、報酬ハッキングの影響を受けやすい。本研究では、報酬ハッキングを軽減するための新しいフレームワーク「Crome」を提案。Cromeは因果的拡張と中立的拡張を用いて、因果属性に基づく感度と虚偽属性に対する不変性を強制する。実験結果では、CromeはRewardBenchで標準的なベースラインを大幅に上回り、平均精度を最大5.4%向上させた。 Comment元ポスト:https://x.com/harman26singh/status/1937876897058181230?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q以下がresearch question:
image

#Survey #Pocket #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #Chain-of-Thought #InstructionTuning #PPO (ProximalPolicyOptimization) #Reasoning #LongSequence #GRPO #Contamination #VerifiableRewards #CurriculumLearning Issue Date: 2025-05-06 100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models, Chong Zhang+, arXiv'25 Summary最近の推論言語モデル(RLM)の進展を受けて、DeepSeek-R1が注目を集めているが、その実装詳細は完全にはオープンソース化されていない。これにより、多くの再現研究が行われ、DeepSeek-R1のパフォーマンスを再現しようとする試みが続いている。特に、監視付きファインチューニング(SFT)と強化学習(RLVR)の戦略が探求され、貴重な洞察が得られている。本報告では、再現研究の概要を提供し、データ構築やトレーニング手順の詳細を紹介し、今後の研究の促進を目指す。また、RLMを強化するための追加技術や開発上の課題についても考察する。 Comment元ポスト:https://x.com/_philschmid/status/1918898257406709983?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

サーベイのtakeawayが箇条書きされている。
#Pocket #NLP #LanguageModel #SelfImprovement #ICLR Issue Date: 2025-04-06 CREAM: Consistency Regularized Self-Rewarding Language Models, Zhaoyang Wang+, ICLR'25 Summary自己報酬型LLMは、LLM-as-a-Judgeを用いてアラインメント性能を向上させるが、報酬とランク付けの正確性が問題。小規模LLMの実証結果は、自己報酬の改善が反復後に減少する可能性を示唆。これに対処するため、一般化された反復的好みファインチューニングフレームワークを定式化し、正則化を導入。CREAMを提案し、報酬の一貫性を活用して信頼性の高い好みデータから学習。実証結果はCREAMの優位性を示す。 Comment・1212

を改善した研究OpenReview:https://openreview.net/forum?id=Vf6RDObyEFこの方向性の研究はおもしろい
#Analysis #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #Chain-of-Thought #Reasoning #LongSequence #PostTraining #Admin'sPick Issue Date: 2025-02-07 Demystifying Long Chain-of-Thought Reasoning in LLMs, Edward Yeo+, arXiv'25 Summary本研究では、大規模言語モデル(LLMs)における長い思考の連鎖(CoTs)推論のメカニズムを調査し、重要な要因を特定。主な発見は、(1) 教師ありファインチューニング(SFT)は必須ではないが効率を向上させる、(2) 推論能力は計算の増加に伴い現れるが、報酬の形状がCoTの長さに影響、(3) 検証可能な報酬信号のスケーリングが重要で、特に分布外タスクに効果的、(4) エラー修正能力は基本モデルに存在するが、RLを通じて効果的に奨励するには多くの計算が必要。これらの洞察は、LLMsの長いCoT推論を強化するためのトレーニング戦略の最適化に役立つ。 Comment元ポスト:https://x.com/xiangyue96/status/1887332772198371514?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q元ポストのスレッド中に論文の11個の知見が述べられている。どれも非常に興味深い。DeepSeek-R1のテクニカルペーパーと同様、

・Long CoTとShort CoTを比較すると前者の方が到達可能な性能のupper bonudが高いことや、
・SFTを実施してからRLをすると性能が向上することや、
・RLの際にCoTのLengthに関する報酬を入れることでCoTの長さを抑えつつ性能向上できること、
・数学だけでなくQAペアなどのノイジーだが検証可能なデータをVerifiableな報酬として加えると一般的なreasoningタスクで数学よりもさらに性能が向上すること、
・より長いcontext window sizeを活用可能なモデルの訓練にはより多くの学習データが必要なこと、
・long CoTはRLによって学習データに類似したデータが含まれているためベースモデルの段階でその能力が獲得されていることが示唆されること、
・aha momentはすでにベースモデル時点で獲得されておりVerifiableな報酬によるRLによって強化されたわけではなさそう、

など、興味深い知見が盛りだくさん。非常に興味深い研究。あとで読む。