Safety
#Pocket
#NLP
#LanguageModel
#DiffusionModel
Issue Date: 2025-07-22 [Paper Note] The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs, Zichen Wen+, arXiv'25 Summary拡散ベースの大規模言語モデル(dLLMs)は、迅速な推論と高いインタラクティビティを提供するが、安全性に関する懸念がある。既存のアライメントメカニズムは、敵対的プロンプトからdLLMsを保護できていない。これに対処するため、DIJAという新しい脱獄攻撃フレームワークを提案し、dLLMsの生成メカニズムを利用して有害な補完を可能にする。実験により、DIJAは既存の手法を大幅に上回り、特にDream-Instructで100%のASRを達成し、JailbreakBenchでの評価でも優れた結果を示した。これにより、dLLMsの安全性のアライメントを再考する必要性が浮き彫りになった。 Comment元ポスト:https://x.com/trtd6trtd/status/1947469171077615995?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Chain-of-Thought #Reasoning
Issue Date: 2025-07-16 [Paper Note] Chain of Thought Monitorability: A New and Fragile Opportunity for AI Safety, Tomek Korbak+, arXiv'25 Summary人間の言語で「考える」AIシステムは、安全性向上のために思考の連鎖(CoT)を監視することで悪意のある意図を検出する機会を提供する。しかし、CoT監視は完璧ではなく、一部の不正行為が見逃される可能性がある。研究を進め、既存の安全手法と併せてCoT監視への投資を推奨する。モデル開発者は、開発の決定がCoTの監視可能性に与える影響を考慮すべきである。 Comment元ポスト:https://x.com/gdb/status/1945350912668737701?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QCoTを監視することで、たとえばモデルのよろしくない挙動(e.g., misalignmentなどの意図しない動作や、prompt injection等の不正行為)を検知することができ、特にAIがより長期的な課題に取り組む際にはより一層その内部プロセスを監視する手段が必要不可欠となるため、CoTの忠実性や解釈性が重要となる。このため、CoTの監視可能性が維持される(モデルのアーキテクチャや学習手法(たとえばCoTのプロセス自体は一見真っ当なことを言っているように見えるが、実はRewardHackingしている、など)によってはそもそもCoTが難読化し監視できなかったりするので、現状は脆弱性がある)、より改善していく方向にコミュニティとして動くことを推奨する。そして、モデルを研究開発する際にはモデルのCoT監視に関する評価を実施すべきであり、モデルのデプロイや開発の際にはCoTの監視に関する決定を組み込むべき、といったような提言のようである。関連:https://x.com/dongxi_nlp/status/1945606266027426048?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #Dataset #LanguageModel #Alignment #Japanese #PostTraining
Issue Date: 2025-06-25 [Paper Note] AnswerCarefully: A Dataset for Improving the Safety of Japanese LLM Output, Hisami Suzuki+, arXiv'25 Summary日本のLLMの安全性を高めるためのデータセット「AnswerCarefully」を紹介。1,800組の質問と参照回答から成り、リスクカテゴリをカバーしつつ日本の文脈に合わせて作成。微調整により出力の安全性が向上し、12のLLMの安全性評価結果も報告。英語翻訳と注釈を提供し、他言語でのデータセット作成を促進。 CommentBlog:https://llmc.nii.ac.jp/answercarefully-dataset/
Issue Date: 2025-07-22 [Paper Note] The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs, Zichen Wen+, arXiv'25 Summary拡散ベースの大規模言語モデル(dLLMs)は、迅速な推論と高いインタラクティビティを提供するが、安全性に関する懸念がある。既存のアライメントメカニズムは、敵対的プロンプトからdLLMsを保護できていない。これに対処するため、DIJAという新しい脱獄攻撃フレームワークを提案し、dLLMsの生成メカニズムを利用して有害な補完を可能にする。実験により、DIJAは既存の手法を大幅に上回り、特にDream-Instructで100%のASRを達成し、JailbreakBenchでの評価でも優れた結果を示した。これにより、dLLMsの安全性のアライメントを再考する必要性が浮き彫りになった。 Comment元ポスト:https://x.com/trtd6trtd/status/1947469171077615995?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Chain-of-Thought #Reasoning
Issue Date: 2025-07-16 [Paper Note] Chain of Thought Monitorability: A New and Fragile Opportunity for AI Safety, Tomek Korbak+, arXiv'25 Summary人間の言語で「考える」AIシステムは、安全性向上のために思考の連鎖(CoT)を監視することで悪意のある意図を検出する機会を提供する。しかし、CoT監視は完璧ではなく、一部の不正行為が見逃される可能性がある。研究を進め、既存の安全手法と併せてCoT監視への投資を推奨する。モデル開発者は、開発の決定がCoTの監視可能性に与える影響を考慮すべきである。 Comment元ポスト:https://x.com/gdb/status/1945350912668737701?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QCoTを監視することで、たとえばモデルのよろしくない挙動(e.g., misalignmentなどの意図しない動作や、prompt injection等の不正行為)を検知することができ、特にAIがより長期的な課題に取り組む際にはより一層その内部プロセスを監視する手段が必要不可欠となるため、CoTの忠実性や解釈性が重要となる。このため、CoTの監視可能性が維持される(モデルのアーキテクチャや学習手法(たとえばCoTのプロセス自体は一見真っ当なことを言っているように見えるが、実はRewardHackingしている、など)によってはそもそもCoTが難読化し監視できなかったりするので、現状は脆弱性がある)、より改善していく方向にコミュニティとして動くことを推奨する。そして、モデルを研究開発する際にはモデルのCoT監視に関する評価を実施すべきであり、モデルのデプロイや開発の際にはCoTの監視に関する決定を組み込むべき、といったような提言のようである。関連:https://x.com/dongxi_nlp/status/1945606266027426048?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #Dataset #LanguageModel #Alignment #Japanese #PostTraining
Issue Date: 2025-06-25 [Paper Note] AnswerCarefully: A Dataset for Improving the Safety of Japanese LLM Output, Hisami Suzuki+, arXiv'25 Summary日本のLLMの安全性を高めるためのデータセット「AnswerCarefully」を紹介。1,800組の質問と参照回答から成り、リスクカテゴリをカバーしつつ日本の文脈に合わせて作成。微調整により出力の安全性が向上し、12のLLMの安全性評価結果も報告。英語翻訳と注釈を提供し、他言語でのデータセット作成を促進。 CommentBlog:https://llmc.nii.ac.jp/answercarefully-dataset/
#EfficiencyImprovement
#Pocket
#NLP
#LanguageModel
#Alignment
#ReinforcementLearning
Issue Date: 2025-06-11
[Paper Note] Saffron-1: Towards an Inference Scaling Paradigm for LLM Safety Assurance, Ruizhong Qiu+, arXiv'25
Summary既存のLLMの安全保証研究は主にトレーニング段階に焦点を当てているが、脱獄攻撃に対して脆弱であることが明らかになった。本研究では、推論スケーリングを用いた新たな安全性向上手法SAFFRONを提案し、計算オーバーヘッドを削減する多分岐報酬モデル(MRM)を導入。これにより、報酬モデル評価の数を減らし、探索-効率性のジレンマを克服する。実験により手法の有効性を確認し、訓練済みモデルと安全報酬データセットを公開。
Comment元ポスト:https://x.com/gaotangli/status/1932289294657626189?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Pretraining
#Pocket
#NLP
#LanguageModel
#Supervised-FineTuning (SFT)
#DPO
#Toxicity
#ActivationSteering/ITI
Issue Date: 2025-05-09
When Bad Data Leads to Good Models, Kenneth Li+, arXiv'25
Summary本論文では、LLMの事前学習におけるデータの質の再検討を行い、有害データが事後学習における制御を向上させる可能性を探ります。トイ実験を通じて、有害データの割合が増加することで有害性の概念が線形表現に影響を与えることを発見し、有害データが生成的有害性を増加させつつも除去しやすくなることを示しました。評価結果は、有害データで訓練されたモデルが生成的有害性を低下させつつ一般的な能力を保持する良好なトレードオフを達成することを示唆しています。
Comment元ポスト:https://x.com/ke_li_2021/status/1920646069613957606?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qこれは面白そうWebコーパスなどを事前学習で利用する際は、質の高いデータを残して学習した方が良いとされているが、4chanのようなtoxicなデータを混ぜて事前学習して、後からdetox(Inference Time Intervention 1941 , SFT, DPO)することで、最終的なモデルのtoxicなoutputが減るという話らしい。これはそもそも事前学習時点でtoxicなデータのsignalが除外されることで、モデルがtoxicな内容のrepresentationを学習できず、最終的にtoxicか否かをコントロールできなくなるため、と考察している(っぽい)
有害な出力を減らせそうなことは分かったが、Activation Steeringによってどの程度モデルの性能に影響を与えるのかが気になる、と思ったがAppendixに記載があった。細かく書かれていないので推測を含むが、各データに対してToxicデータセットでProbingすることでTopKのheadを決めて、Kの値を調整することでinterventionの強さを調整し、Toxicデータの割合を変化させて評価してみたところ、モデルの性能に大きな影響はなかったということだと思われる(ただし1Bモデルでの実験しかない)
おそらく2,3節あたりが一番おもしろいポイントなのだと思われるがまだ読めていない。 #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) Issue Date: 2025-04-29 Safety Alignment Should Be Made More Than Just a Few Tokens Deep, Xiangyu Qi+, arXiv'24 Summary現在の大規模言語モデル(LLMs)の安全性アラインメントは脆弱であり、単純な攻撃や善意のファインチューニングによって脱獄される可能性がある。この脆弱性は「浅い安全性アラインメント」に起因し、アラインメントが主に最初の数トークンの出力にのみ適応されることに関連している。本論文では、この問題のケーススタディを提示し、現在のアラインされたLLMsが直面する脆弱性を説明する。また、浅い安全性アラインメントの概念が脆弱性軽減の研究方向を示唆し、初期トークンを超えたアラインメントの深化がロバスト性を向上させる可能性を示す。最後に、ファインチューニング攻撃に対する持続的な安全性アラインメントを実現するための正則化されたファインチューニング目的を提案する。 Comment元ポスト:https://x.com/hillbig/status/1917006979836612640?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QOpenReview:https://openreview.net/forum?id=6Mxhg9PtDESafety Alignment手法が最初の数トークンに依存しているからそうならないように学習しますというのは、興味深いテーマだし技術的にまだ困難な点もあっただろうし、インパクトも大きいし、とても良い研究だ…。 #Pocket #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) #DPO #PostTraining Issue Date: 2024-09-24 Backtracking Improves Generation Safety, Yiming Zhang+, N_A, arXiv'24 Summaryテキスト生成における安全性の問題に対処するため、バックトラッキング手法を提案。特別な[RESET]トークンを用いて生成された不適切なテキストを「取り消し」、モデルの安全性を向上させる。バックトラッキングを導入したLlama-3-8Bは、ベースラインモデルに比べて4倍の安全性を示し、有用性の低下は見られなかった。 Comment元ポスト: https://x.com/jaseweston/status/1838415378529112330?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
おそらく2,3節あたりが一番おもしろいポイントなのだと思われるがまだ読めていない。 #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) Issue Date: 2025-04-29 Safety Alignment Should Be Made More Than Just a Few Tokens Deep, Xiangyu Qi+, arXiv'24 Summary現在の大規模言語モデル(LLMs)の安全性アラインメントは脆弱であり、単純な攻撃や善意のファインチューニングによって脱獄される可能性がある。この脆弱性は「浅い安全性アラインメント」に起因し、アラインメントが主に最初の数トークンの出力にのみ適応されることに関連している。本論文では、この問題のケーススタディを提示し、現在のアラインされたLLMsが直面する脆弱性を説明する。また、浅い安全性アラインメントの概念が脆弱性軽減の研究方向を示唆し、初期トークンを超えたアラインメントの深化がロバスト性を向上させる可能性を示す。最後に、ファインチューニング攻撃に対する持続的な安全性アラインメントを実現するための正則化されたファインチューニング目的を提案する。 Comment元ポスト:https://x.com/hillbig/status/1917006979836612640?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QOpenReview:https://openreview.net/forum?id=6Mxhg9PtDESafety Alignment手法が最初の数トークンに依存しているからそうならないように学習しますというのは、興味深いテーマだし技術的にまだ困難な点もあっただろうし、インパクトも大きいし、とても良い研究だ…。 #Pocket #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) #DPO #PostTraining Issue Date: 2024-09-24 Backtracking Improves Generation Safety, Yiming Zhang+, N_A, arXiv'24 Summaryテキスト生成における安全性の問題に対処するため、バックトラッキング手法を提案。特別な[RESET]トークンを用いて生成された不適切なテキストを「取り消し」、モデルの安全性を向上させる。バックトラッキングを導入したLlama-3-8Bは、ベースラインモデルに比べて4倍の安全性を示し、有用性の低下は見られなかった。 Comment元ポスト: https://x.com/jaseweston/status/1838415378529112330?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q