memory
#Pocket
#NLP
#LanguageModel
#LLMAgent
#ContextEngineering
Issue Date: 2025-08-12 [Paper Note] Memp: Exploring Agent Procedural Memory, Runnan Fang+, arXiv'25 Summary本研究では、LLMに基づくエージェントに学習可能で更新可能な手続き的記憶を持たせるための戦略を提案。Mempを用いて過去のエージェントの軌跡を指示や抽象に蒸留し、記憶の構築と更新を行う。TravelPlannerとALFWorldでの実証評価により、記憶リポジトリが進化することでエージェントの成功率と効率が向上することを示した。また、強力なモデルからの手続き的記憶の移行により、弱いモデルでも性能向上が得られることが確認された。 Comment元ポスト:https://x.com/zxlzr/status/1954840738082193477?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qアドホックに探索と実行を繰り返すのではなく、過去の試行のtrajectoryをメモリに記憶しておき、活用するような枠組みな模様。trajectoryは新たなタスクが来た際にretrieverでrelevantなtrajectoryを検索して利用され、良質なtrajectoryがキープされれば成功率や効率が向上すると考えられる。trajectoryはprocedure memoryとして保存され、成功率が低いtrajectoryは破棄されることで更新される。
メモリはT個のタスクに対するs_t, a_t, o_t, i.e., state, action, observation,の系列τと、reward rが与えられた時に、Builderを通して構築されてストアされる。agentは新たなタスクt_newに直面した時に、t_newと類似したメモリをretrieyeする。これはτの中のある時刻tのタスクに対応する。メモリは肥大化していくため、実験では複数のアルゴリズムに基づくメモリの更新方法について実験している。
procedural memoryの有無による挙動の違いに関するサンプル。
memoryに対してretrieverを適用することになるので、retrieverの性能がボトルネックになると思われる。追加の学習をしなくて済むのは利点だが、その代わりモデル側がメモリ管理をする機能を有さない(学習すればそういった機能を持たせられるはず)ので、その点は欠点となる、という印象。簡易解説:
https://x.com/huggingpapers/status/1954937801490772104?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Survey #Pocket #NLP #LanguageModel
Issue Date: 2025-08-11 [Paper Note] A Survey on the Memory Mechanism of Large Language Model based Agents, Zeyu Zhang+, arXiv'24 SummaryLLMベースのエージェントのメモリメカニズムに関する包括的な調査を提案。メモリの重要性を論じ、過去の研究を体系的にレビューし、エージェントアプリケーションでの役割を紹介。既存研究の限界を分析し、将来の研究方向性を示す。リポジトリも作成。 Comment元ポスト:https://x.com/jiqizhixin/status/1954797669957968169?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
Issue Date: 2025-08-12 [Paper Note] Memp: Exploring Agent Procedural Memory, Runnan Fang+, arXiv'25 Summary本研究では、LLMに基づくエージェントに学習可能で更新可能な手続き的記憶を持たせるための戦略を提案。Mempを用いて過去のエージェントの軌跡を指示や抽象に蒸留し、記憶の構築と更新を行う。TravelPlannerとALFWorldでの実証評価により、記憶リポジトリが進化することでエージェントの成功率と効率が向上することを示した。また、強力なモデルからの手続き的記憶の移行により、弱いモデルでも性能向上が得られることが確認された。 Comment元ポスト:https://x.com/zxlzr/status/1954840738082193477?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qアドホックに探索と実行を繰り返すのではなく、過去の試行のtrajectoryをメモリに記憶しておき、活用するような枠組みな模様。trajectoryは新たなタスクが来た際にretrieverでrelevantなtrajectoryを検索して利用され、良質なtrajectoryがキープされれば成功率や効率が向上すると考えられる。trajectoryはprocedure memoryとして保存され、成功率が低いtrajectoryは破棄されることで更新される。
メモリはT個のタスクに対するs_t, a_t, o_t, i.e., state, action, observation,の系列τと、reward rが与えられた時に、Builderを通して構築されてストアされる。agentは新たなタスクt_newに直面した時に、t_newと類似したメモリをretrieyeする。これはτの中のある時刻tのタスクに対応する。メモリは肥大化していくため、実験では複数のアルゴリズムに基づくメモリの更新方法について実験している。
procedural memoryの有無による挙動の違いに関するサンプル。
https://x.com/huggingpapers/status/1954937801490772104?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Survey #Pocket #NLP #LanguageModel
Issue Date: 2025-08-11 [Paper Note] A Survey on the Memory Mechanism of Large Language Model based Agents, Zeyu Zhang+, arXiv'24 SummaryLLMベースのエージェントのメモリメカニズムに関する包括的な調査を提案。メモリの重要性を論じ、過去の研究を体系的にレビューし、エージェントアプリケーションでの役割を紹介。既存研究の限界を分析し、将来の研究方向性を示す。リポジトリも作成。 Comment元ポスト:https://x.com/jiqizhixin/status/1954797669957968169?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q