mid-training

#Pretraining #Pocket #NLP #Dataset #LanguageModel #SyntheticData #Programming #Mathematics #COLM
Issue Date: 2025-07-10 [Paper Note] MegaMath: Pushing the Limits of Open Math Corpora, Fan Zhou+, COLM'25 SummaryMegaMathは、数学に特化したオープンデータセットで、LLMの数学的推論能力を向上させるために作成された。ウェブデータの再抽出、数学関連コードの特定、合成データの生成を通じて、371Bトークンの高品質なデータを提供し、既存のデータセットを上回る量と品質を実現した。 Comment元ポスト:https://x.com/fazhou_998/status/1942610771915202590?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q非常に大規模な数学の事前学習/mid-training向けのデータセット

CommonCrawlのHTMLから、さまざまなフィルタリング処理(reformatting, 2 stageのHTML parserの活用(片方はnoisyだが高速、もう一方は高性能だが遅い), fasttextベースの分類器による抽出, deduplication等)を実施しMegaMath-Webを作成、また、MegaMathWebをさらに分類器で低品質なものをフィルタリングし、LLMによってノイズ除去、テキストのreorganizingを実施し(≠ピュアな合成データ)継続事前学習、mid-training向けの高品質なMegaMath-Web-Proを作成。

MegaMathCodeはThe Stack V2 (2199) をベースにしており、mathematical reasoning, logic puzzles, scientific computationに関するコードを収集。まずこれらのコードと関連が深い11のプログラミング言語を選定し、そのコードスニペットのみを対象とする。次にstrong LLMを用いて、数学に関するrelevanceスコアと、コードの品質を0--6のdiscrete scoreでスコアリングし学習データを作成。作成した学習データでSLMを学習し大規模なフィルタリングを実施することでMegaMath-Codeを作成。

最後にMegaMath-{Web, code}を用いて、Q&A, code data, text&code block dataの3種類を合成。Q&Aデータの合成では、MegaMath-WebからQAペアを抽出し、多様性とデータ量を担保するためQwen2.5-72B-Instruct, Llama3.3-70B-Instructの両方を用いて、QAのsolutionを洗練させる(reasoning stepの改善, あるいはゼロから生成する[^1])ことで生成。また、code dataでは、pythonを対象にMegaMath-Codeのデータに含まれるpython以外のコードを、Qwen2.5-Coder-32B-Instructと、Llamd3.1-70B-Instructによってpythonに翻訳することでデータ量を増やした。text&code blockデータでは、MegaMath-Webのドキュメントを与えて、ブロックを生成(タイトル、数式、結果、コードなど[^1])し、ブロックのverificationを行い(コードが正しく実行できるか、実行結果とanswerが一致するか等)、verifiedなブロックを残すことで生成。

image

image

image

[^1]: この辺は論文の記述を咀嚼して記述しており実サンプルを見ていないので少し正しい認識か不安
#ComputerVision #Pretraining #Pocket #NLP #Supervised-FineTuning (SFT) #ReinforcementLearning #MulltiModal #RLHF #Reasoning #LongSequence #RewardHacking #PostTraining #CurriculumLearning #RLVR #Admin'sPick #VisionLanguageModel
Issue Date: 2025-07-03 [Paper Note] GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning, GLM-V Team+, arXiv'25 Summary視覚言語モデルGLM-4.1V-Thinkingを発表し、推論中心のトレーニングフレームワークを開発。強力な視覚基盤モデルを構築し、カリキュラムサンプリングを用いた強化学習で多様なタスクの能力を向上。28のベンチマークで最先端のパフォーマンスを達成し、特に難しいタスクで競争力のある結果を示す。モデルはオープンソースとして公開。 Comment元ポスト:https://x.com/sinclairwang1/status/1940331927724232712?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QQwen2.5-VLよりも性能が良いVLM
imageアーキテクチャはこちら。が、pretraining(データのフィルタリング, マルチモーダル→long context継続事前学習)->SFT(cold startへの対処, reasoning能力の獲得)->RL(RLVRとRLHFの併用によるパフォーマンス向上とAlignment, RewardHackingへの対処,curriculum sampling)など、全体の学習パイプラインの細かいテクニックの積み重ねで高い性能が獲得されていると考えられる。
image
#Analysis #Pocket #NLP #LanguageModel #ReinforcementLearning #PostTraining #read-later #Admin'sPick
Issue Date: 2025-06-27 [Paper Note] OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling, Zengzhi Wang+, arXiv'25 Summary異なるベース言語モデル(LlamaやQwen)の強化学習(RL)における挙動を調査し、中間トレーニング戦略がRLのダイナミクスに与える影響を明らかに。高品質の数学コーパスがモデルのパフォーマンスを向上させ、長い連鎖的思考(CoT)がRL結果を改善する一方で、冗長性や不安定性を引き起こす可能性があることを示す。二段階の中間トレーニング戦略「Stable-then-Decay」を導入し、OctoThinkerモデルファミリーを開発。オープンソースのモデルと数学推論コーパスを公開し、RL時代の基盤モデルの研究を支援することを目指す。 Comment元ポスト:https://x.com/sinclairwang1/status/1938244843857449431?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qmid-trainingの観点から、post trainingにおけるRLがスケーリングする条件をsystematicallyに調査している模様論文中にはmid-training[^1]の定義が記述されている:

Image

[^1]: mid-trainingについてはコミュニティの間で厳密な定義はまだ無くバズワードっぽく使われている、という印象を筆者は抱いており、本稿は文献中でmid-trainingを定義する初めての試みという所感