reading

#Analysis #Pocket #NLP #Chain-of-Thought #Reasoning #read-later
Issue Date: 2025-08-27 [Paper Note] Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens, Chengshuai Zhao+, arXiv'25 GPT Summary- Chain-of-Thought (CoT) プロンプティングはLLMの性能向上に寄与するが、その深さには疑問が残る。本研究では、CoT推論が訓練データの構造的バイアスを反映しているかを調査し、訓練データとテストクエリの分布不一致がその効果に与える影響を分析。DataAlchemyという制御環境を用いて、CoT推論の脆弱性を明らかにし、一般化可能な推論の達成に向けた課題を強調する。 #Analysis #Pocket #NLP #LanguageModel #ICLR #read-later
Issue Date: 2025-08-11 [Paper Note] Physics of Language Models: Part 2.1, Grade-School Math and the Hidden Reasoning Process, Tian Ye+, ICLR'25 GPT Summary- 言語モデルの数学的推論能力を研究し、GSM8Kベンチマークでの精度向上のメカニズムを探る。具体的には、推論スキルの発展、隠れたプロセス、人間との違い、必要なスキルの超越、推論ミスの原因、モデルのサイズや深さについての実験を行い、LLMの理解を深める洞察を提供。 Comment

openreview: https://openreview.net/forum?id=Tn5B6Udq3E

解説:
- 言語モデルの物理学, 佐藤竜馬, 2025.03

小学生向けの算数の問題を通じて、以下の基本的なResearch Questionsについて調査して研究。これらを理解することで、言語モデルの知能を理解する礎とする。

## Research Questions
- 言語モデルはどのようにして小学校レベルの算数の問題を解けるようになるのか?
- 単にテンプレートを暗記しているだけなのか、それとも人間に似た推論スキルを学んでいるのか?
- あるいは、その問題を解くために新しいスキルを発見しているのか?
- 小学校レベルの算数問題だけで訓練されたモデルは、それらの問題を解くことしか学ばないのか?
- それとも、より一般的な知能を学習するのか?
- どのくらい小さい言語モデルまで、小学校レベルの算数問題を解けるのか?
- 深さ(層の数)は幅(層ごとのニューロン数)より重要なのか?
- それとも、単にサイズだけが重要か?

(続きはのちほど...)



#Analysis #Pocket #NLP #LanguageModel #Prompting #ACL #read-later #MajorityVoting
Issue Date: 2025-08-03 [Paper Note] Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling: A Perspective of Probability Theory, Yexiang Liu+, ACL'25 Outstanding Paper GPT Summary- 本研究では、LLMのテスト時の計算スケーリングにおけるプロンプト戦略の効果を調査。6つのLLMと8つのプロンプト戦略を用いた実験により、複雑なプロンプト戦略が単純なChain-of-Thoughtに劣ることを示し、理論的な証明を提供。さらに、スケーリング性能を予測し最適なプロンプト戦略を特定する手法を提案し、リソース集約的な推論プロセスの必要性を排除。複雑なプロンプトの再評価と単純なプロンプト戦略の潜在能力を引き出すことで、テスト時のスケーリング性能向上に寄与することを目指す。 Comment

non-thinkingモデルにおいて、Majority Voting (i.e. Self Consistency)によるtest-time scalingを実施する場合のさまざまなprompting戦略のうち、budgetとサンプリング数が小さい場合はCoT以外の適切なprompting戦略はモデルごとに異なるが、budgetやサンプリング数が増えてくるとシンプルなCoT(実験ではzeroshot CoTを利用)が最適なprompting戦略として支配的になる、という話な模様。

さらに、なぜそうなるかの理論的な分析と最適な与えられた予算から最適なprompting戦略を予測する手法も提案している模様。

が、評価データの難易度などによってこの辺は変わると思われ、特にFigure39に示されているような、**サンプリング数が増えると簡単な問題の正解率が上がり、逆に難しい問題の正解率が下がるといった傾向があり、CoTが簡単な問題にサンプリング数を増やすと安定して正解できるから支配的になる**、という話だと思われるので、常にCoTが良いと勘違いしない方が良さそうだと思われる。たとえば、**解こうとしているタスクが難問ばかりであればCoTでスケーリングするのが良いとは限らない、といった点には注意が必要**だと思うので、しっかり全文読んだ方が良い。時間がある時に読みたい(なかなかまとまった時間取れない)

image

最適なprompting戦略を予測する手法では、
- 問題の難易度に応じて適応的にスケールを変化させ(なんとO(1)で予測ができる)
- 動的に最適なprompting戦略を選択

することで、Majority@10のAcc.を8Bスケールのモデルで10--50%程度向上させることができる模様。いやこれほんとしっかり読まねば。