ContextEngineering
Issue Date: 2025-10-11 [Paper Note] Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models, Qizheng Zhang+, arXiv'25, 2025.10 GPT Summary- ACEフレームワークは、適応メモリに基づき、コンテキストを進化するプレイブックとして扱い、生成、反省、キュレーションを通じて戦略を洗練します。これにより、詳細な知識を保持し、コンテキスト崩壊を防ぎます。ACEはエージェントやドメイン特化型ベンチマークで優れた性能を発揮し、適応のレイテンシとコストを削減。特に、ラベルなしで効果的に適応し、自然なフィードバックを活用する点が特徴です。全体の平均でトップランクのエージェントに匹敵し、より難しいテストでも優れた結果を示しました。 Comment
元ポスト:
ポイント解説:
#Analysis #MachineLearning #Pocket #NLP #Transformer #Attention #ICML
Issue Date: 2025-09-26 [Paper Note] Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding, Mingyu Jin+, ICML'25, 2025.02 GPT Summary- 大規模言語モデル(LLMs)は文脈的知識の理解に成功しており、特に注意クエリ(Q)とキー(K)において集中した大規模な値が一貫して現れることを示す。これらの値は、モデルのパラメータに保存された知識ではなく、現在の文脈から得られる知識の解釈に重要である。量子化戦略の調査により、これらの値を無視すると性能が低下することが明らかになり、集中した大規模な値の出現がロタリーポジショナルエンコーディング(RoPE)によって引き起こされることを発見した。これらの結果は、LLMの設計と最適化に関する新たな洞察を提供する。 Comment
openreview: https://openreview.net/forum?id=1SMcxxQiSL¬eId=7BAXSETAwU
#Pocket #NeurIPS
Issue Date: 2025-09-19 [Paper Note] Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models, Zidi Xiong+, NeurIPS'25 GPT Summary- 大規模推論モデル(LRMs)は、Chain-of-Thoughtを用いて複雑な問題解決能力を向上させているが、中間的な推論プロセスの信頼性が重要である。本研究では、思考ドラフトの信頼性を評価するための反事実介入フレームワークを提案し、インタードラフト信頼性とドラフトから回答への信頼性の2つの次元に焦点を当てた。実験の結果、LRMsは中間的な推論ステップに対して選択的な信頼性を示し、ドラフトの結論と一致しないことが多いことが明らかになった。これにより、LRMsにおける信頼性と解釈可能性の向上が求められる。 Comment
元ポスト:
おもしろそう
元ポスト:
#Pocket #NLP #LanguageModel #ReinforcementLearning #LLMAgent #read-later Issue Date: 2025-09-17 [Paper Note] ReSum: Unlocking Long-Horizon Search Intelligence via Context Summarization, Xixi Wu+, arXiv'25 GPT Summary- ReSumという新しいパラダイムを導入し、定期的なコンテキスト要約を通じて無限の探索を可能にする。ReSum-GRPOを提案し、エージェントが要約条件付き推論に慣れるようにする。実験により、ReSumはReActに対して平均4.5%の改善を示し、WebResummer-30Bは既存のウェブエージェントを上回る性能を達成。 Comment
元ポスト:
#Analysis #Pocket #NLP #LanguageModel #LLMAgent #Reasoning #LongSequence #Scaling Laws #read-later #Selected Papers/Blogs Issue Date: 2025-09-14 [Paper Note] The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs, Akshit Sinha+, arXiv'25 GPT Summary- LLMsのスケーリングが収益に影響を与えるかを探求。単一ステップの精度向上がタスクの長さに指数的改善をもたらすことを観察。LLMsが長期タスクで失敗するのは推論能力の欠如ではなく実行ミスによると主張。知識と計画を明示的に提供することで実行能力を向上させる提案。モデルサイズをスケーリングしても自己条件付け効果は減少せず、長いタスクでのミスが増加。思考モデルは自己条件付けを行わずに長いタスクを実行可能。最終的に、実行能力に焦点を当てることで、LLMsの複雑な推論問題解決能力と単純タスクの長期化による失敗理由を調和させる。 Comment
元ポスト:
single stepでのタスク性能はサチって見えても、成功可能なタスクの長さは(single stepの実行エラーに引きづられるため)モデルのsingle stepのタスク性能に対して指数関数的に効いている(左上)。タスクが長くなればなるほどモデルは自身のエラーに引きずられ(self conditioning;右上)、これはパラメータサイズが大きいほど度合いが大きくなる(右下; 32Bの場合contextにエラーがあって場合のloeg horizonのAcc.が14Bよりも下がっている)。一方で、実行可能なstep数の観点で見ると、モデルサイズが大きい場合の方が多くのstepを要するタスクを実行できる(左下)。また、ThinkingモデルはSelf Conditioningの影響を受けにくく、single stepで実行可能なタスクの長さがより長くなる(中央下)。
といった話に見えるが、論文をしっかり読んだ方が良さそう。
(元ポストも著者ポストだが)著者ポスト:
このスレッドは読んだ方が良い(というか論文を読んだ方が良い)。
特に、**CoTが無い場合は**single-turnでほとんどのモデルは5 stepのタスクをlatent spaceで思考し、実行することができないというのは興味深い(が、細かい設定は確認した方が良い)。なので、マルチステップのタスクは基本的にはplanningをさせてから出力をさせた方が良いという話や、
では複雑なstepが必要なタスクはsingle turnではなくmulti turnに分けた方が良いのか?と言うと、モデルによって傾向が違うらしい、といった話が書かれている。たとえば、Qwenはsingle turnを好むが、Gemmaはmulti turnを好むらしい。
日本語ポイント解説:
解説:
#Pocket #NLP #LanguageModel #LLMAgent #memory Issue Date: 2025-08-12 [Paper Note] Memp: Exploring Agent Procedural Memory, Runnan Fang+, arXiv'25 GPT Summary- 本研究では、LLMに基づくエージェントに学習可能で更新可能な手続き的記憶を持たせるための戦略を提案。Mempを用いて過去のエージェントの軌跡を指示や抽象に蒸留し、記憶の構築と更新を行う。TravelPlannerとALFWorldでの実証評価により、記憶リポジトリが進化することでエージェントの成功率と効率が向上することを示した。また、強力なモデルからの手続き的記憶の移行により、弱いモデルでも性能向上が得られることが確認された。 Comment
元ポスト:
アドホックに探索と実行を繰り返すのではなく、過去の試行のtrajectoryをメモリに記憶しておき、活用するような枠組みな模様。trajectoryは新たなタスクが来た際にretrieverでrelevantなtrajectoryを検索して利用され、良質なtrajectoryがキープされれば成功率や効率が向上すると考えられる。trajectoryはprocedure memoryとして保存され、成功率が低いtrajectoryは破棄されることで更新される。
メモリはT個のタスクに対するs_t, a_t, o_t, i.e., state, action, observation,の系列τと、reward rが与えられた時に、Builderを通して構築されてストアされる。agentは新たなタスクt_newに直面した時に、t_newと類似したメモリをretrieyeする。これはτの中のある時刻tのタスクに対応する。メモリは肥大化していくため、実験では複数のアルゴリズムに基づくメモリの更新方法について実験している。
procedural memoryの有無による挙動の違いに関するサンプル。
memoryに対してretrieverを適用することになるので、retrieverの性能がボトルネックになると思われる。追加の学習をしなくて済むのは利点だが、その代わりモデル側がメモリ管理をする機能を有さない(学習すればそういった機能を持たせられるはず)ので、その点は欠点となる、という印象。
ポイント解説:
#Survey #NLP #LanguageModel #LLMAgent Issue Date: 2025-07-19 [Paper Note] A Survey of Context Engineering for Large Language Models, Lingrui Mei+, arXiv'25 GPT Summary- 本調査では、LLMsの性能を向上させる「コンテキストエンジニアリング」を提案し、その要素と実装方法を体系的に分類。コンテキストの取得、生成、処理、管理を検討し、洗練されたシステム実装を探る。1300以上の研究を分析し、モデルの能力の非対称性を明らかにし、複雑な文脈理解と長文出力生成のギャップに対処する重要性を強調。研究者とエンジニアのための統一フレームワークを提供。 Comment
もうContext Engineeringという切り口の体系化されたSurveyが出てきた。早すぎ。
元ポスト:
#Analysis #Pocket #NLP #LanguageModel #LLMAgent #Conversation Issue Date: 2025-05-24 LLMs Get Lost In Multi-Turn Conversation, Philippe Laban+, arXiv'25 GPT Summary- LLMsは会話型インターフェースとして、ユーザーがタスクを定義するのを支援するが、マルチターンの会話ではパフォーマンスが低下する。シミュレーション実験の結果、マルチターンで39%のパフォーマンス低下が見られ、初期のターンでの仮定に依存しすぎることが原因と判明。LLMsは会話中に誤った方向に進むと、回復が難しくなることが示された。 Comment
元ポスト:
Lost in the MiddleならぬLost in Conversation
関連:
- Lost in the Middle: How Language Models Use Long Contexts, Nelson F. Liu+, N/A, TACL'24
#NLP #LanguageModel #Bias #NAACL #PostTraining #PerplexityCurse Issue Date: 2025-05-02 Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction, Kuniaki Saito+, NAACL'25 GPT Summary- LLMは新しい文書でファインチューニングが必要だが、「困惑の呪い」により情報抽出が困難。特に文書の初めに関する質問には正確に答えるが、中間や末尾の情報抽出に苦労する。自己回帰的トレーニングがこの問題を引き起こすことを示し、デノイジング自己回帰損失が情報抽出を改善する可能性を示唆。これにより、LLMの知識抽出と新ドメインへの適応に関する新たな議論が生まれる。 Comment
元ポスト:

LLMの知識を最新にするために新しい文書(e.g., 新しいドメインの文書等)をLLMに与え(便宜上学習データと呼ぶ)Finetuningをした場合、Finetuning後のモデルで与えられたqueryから(LLM中にパラメータとしてmemorizeされている)対応する事実情報を抽出するようInferenceを実施すると、queryに対応する事実情報の学習データ中での位置が深くなると(i.e., middle -- endになると)抽出が困難になる Positional Biasが存在する[^1]ことを明らかにした。
そして、これを緩和するために正則化が重要(e.g., Denoising, Shuffle, Attention Drops)であることを実験的に示し、正則化手法は複数組み合わせることで、よりPositional Biasが緩和することを示した研究
[^1]: 本研究では"Training"に利用する文書のPositional Biasについて示しており、"Inference"時におけるPositional Biasとして知られている"lost-in-the middle"とは異なる現象を扱っている点に注意
## データセット
文書 + QAデータの2種類を構築しFinetuning後のknowledge extraction能力の検証をしている[^2]。
実験では、`Synthetic Bio (合成データ)`, `Wiki2023+(実データ)` の2種類のデータを用いて、Positional Biasを検証している。
Synthetic bioは、人間のbiographyに関する9つの属性(e.g., 誕生日, 出生地)としてとりうる値をChatGPTに生成させ、3000人の人物に対してそれらをランダムにassignし、sentence templateを用いてSurface Realizationすることで人工的に3000人のbiographyに関するテキストを生成している。
一方、Wiki2023+では、Instruction-tuned Language Models are Better Knowledge Learners, Zhengbao Jiang+, ACL'24
の方法にのっとって [^3]事前学習時の知識とのoverlapが最小となるように`2023`カテゴリ以下のwikipediaの様々なジャンルの記事を収集して活用する。QAデータの構築には、元文書からsentenceを抽出し、GPT-3.5-Turboに当該sentenceのみを与えてQA pairを作成させることで、データを作成している。なお、hallucinationや品質の低いQA pairをフィルタリングした。フィルタリング後のQA Pairをランダムにサンプリングし品質を確認したところ、95%のQA pairが妥当なものであった。
これにより、下図のようなデータセットが作成される。FigureCが `Wiki2023+`で、FigureDが`SyntheticBio`。`Wiki2023+`では、QA pairの正解が文書中の前半により正解が現れるような偏りが見受けられる。

[^2]: Physics of Language Models: Part 3.1, Knowledge Storage and Extraction, Zeyuan Allen-Zhu+, ICML'24
において、知識 + 知識を抽出するタスクの双方を用いて学習することで、モデルから知識を抽出する能力が備わることが示されているため。
[^3]: Llama-2-7Bにおいて2023カテゴリ以下の情報に対するQAのperformanceが著しく低いことから、事前学習時に当該データが含まれている可能性が低いことが示唆されている
## 実験 & 実験結果 (modulated data) ## 実験 & 実験結果 (unmodulated data) Lost in the Middleに関する研究。 関連研究: 元ツイート
作成した文書+QAデータのデータセットについて、QAデータをtrain/valid/testに分けて、文書データは全て利用し、testに含まれるQAに適切に回答できるかで性能を評価する。このとき、文書中でQAに対する正解がテキストが出現する位置を変化させモデルの学習を行い、予測性能を見ることで、Positional Biasが存在することを明らかにする。このとき、Physics of Language Models: Part 3.1, Knowledge Storage and Extraction, Zeyuan Allen-Zhu+, ICML'24
に倣い、文書とQAをMixed Sampling(1バッチあたり256件のサンプルをランダムにQAおよび文書データからサンプリング;
# 1923 では文書とQAを2:8の比率でサンプリングしている)することで学習をする。QAの場合目的関数は回答テキスト部分のみのNLL、文書の場合はnext-token prediction lossを利用する。
Positional Biasの存在を示すだけでなく、(A, B, C) の順番でnext-token prediction lossで学習されたモデルの場合、Cの知識を抽出するためにA, Bがcontextとして必要となるため、Cを抽出する際の汎化性能を高めるためにA, Bの表現がより多様である必要がある、という課題がある。これに対処するためのいくつかのシンプルな正則化手法、具体的には
- D-AR: predition targetのトークンは保持したまま、input tokenの一部をランダムなトークンに置き換える
- Shuffle: 入力文をシャッフルする
- Attn Drop: self-attentionモジュールのattention weightをランダムに0にする
の3種類とPositional Biasの関係性を検証している。

検証の結果、(合成データ、実データともに)Positional Biasが存在することが明らかとなり(i.e., 正解テキストが文書中の深い位置にあればあるほど予測性能が低下する)正則化によってPositional Biasが緩和されることが示された。

また、異なるモデルサイズで性能を比較したところ、モデルサイズを大きくすることで性能自体は改善するが、依然としてPositional Biasが存在することが示され、ARよりもD-ARが一貫して高い性能を示した。このことから、Positional Biasを緩和するために何らかの正則化手法が必要なことがわかる。

また、オリジナル文書の1文目を、正解データの位置を入れ替えた各モデルに対して、テキスト中の様々な位置に配置してPerplexityを測った。この設定では、モデルがPerplexityを最小化するためには、(1文目ということは以前の文脈が存在しないsentenceなので)文脈に依存せずに文の記憶していなければならない。よって、各手法ごとにどの程度Perplexityが悪化するかで、各手法がどの程度あるsentenceを記憶する際に過去の文脈に依存しているかが分かる。ここで、学習データそのもののPerplexityはほぼ1.0であったことに注意する。
結果として、文書中の深い位置に配置されればされるほどPerplexityは増大し(left)、Autoregressive Model (AR) のPerplexity値が最も値が大きかった(=性能が悪かった)。このことから、ARはより過去の文脈に依存してsentenceの情報を記憶していることが分かる。また、モデルサイズが小さいモデルの方がPerplexityは増大する傾向にあることがわかった (middle)。これはFig.3で示したQAのパフォーマンスと傾向が一致しており、学習データそのもののPerplexityがほぼ1.0だったことを鑑みると、学習データに対するPerplexityは様々なPositionに位置する情報を適切に抽出できる能力を測るメトリックとしては適切でないことがわかる。また、学習のiterationを増やすと、ARの場合はfirst positionに対する抽出性能は改善したが、他のpositionでの抽出性能は改善しなかった。一方、D-ARの場合は、全てのpositionでの抽出性能が改善した (right) 。このことから、必ずしも学習のiterationを増やしても様々なPositionに対する抽出性能が改善しないこと、longer trainingの恩恵を得るためには正則化手法を利用する必要があることが明らかになった。

</p>
Wiki2023+データに対して上記のようなデータの変更を行わずに、そのまま学習を行い、各位置ごとのQAの性能を測定したところ、(すべてがPositional Biasのためとは説明できないが)回答が文書中の深い位置にある場合の性能が劣化することを確認した。2--6番目の性能の低下は、最初の文ではシンプルな事実が述べられ、後半になればなるほどより複雑な事実が述べられる傾向があることが起因して性能の低下しているとかせつをたてている。また、unmodulated dataの場合でもD-ARはARの性能を改善することが明らかとなった。モデルサイズが大きいほど性能は改善するが、以前として文書中の深い位置に正解がある場合に性能は劣化することもわかる。
また、正則化手法は組み合わせることでさらに性能が改善し、Physics of Language Models: Part 3.1, Knowledge Storage and Extraction, Zeyuan Allen-Zhu+, ICML'24
</strong>
に示されている通り、学習データ中の表現を多様にし[^1]学習したところ予測性能が改善し、正則化手法とも補完的な関係であることも示された。
医療ドメインでも実験したところ、正則化手法を適用した場合にARよりも性能が上回った。最後にWiki2023+データについてOpenbookな設定で、正解が含まれる文書をLLMのcontextとして与えた場合(i.e.,ほぼ完璧なretrieverが存在するRAGと同等の設定とみなせる)、QAの性能は90.6%に対し、継続学習した場合のベストモデルの性能は50.8%だった。このことから、正確なretrieverが存在するのであれば、継続学習よりもRAGの方がQAの性能が高いと言える。
RAGと継続学習のメリット、デメリットの両方を考慮して、適切に手法を選択することが有効であることが示唆される。
[^1]: ChatGPTによってテキストをrephraseし、sentenceのorderも変更することで多様性を増やした。が、sentence orderが文書中の深い位置にある場合にあまりorderが変化しなかったようで、このため深い位置に対するQAの性能改善が限定的になっていると説明している。
#Pocket
#NLP
#Dataset
#LanguageModel
#LongSequence
Issue Date: 2025-03-20
Lost-in-the-Middle in Long-Text Generation: Synthetic Dataset, Evaluation Framework, and Mitigation, Junhao Zhang+, arXiv'25
GPT Summary- 長い入力と出力の生成に特化したLongInOutBenchを導入し、既存手法の「中間での喪失」問題に対処。Retrieval-Augmented Long-Text Writer(RAL-Writer)を開発し、重要なコンテンツを再表現することで性能を向上。提案手法の有効性をベースラインと比較して示す。
Comment
- Lost in the Middle: How Language Models Use Long Contexts, Nelson F. Liu+, N/A, TACL'24
#Analysis
#MachineLearning
#NLP
#LanguageModel
#Prompting
#In-ContextLearning
#TACL
Issue Date: 2023-07-11
Lost in the Middle: How Language Models Use Long Contexts, Nelson F. Liu+, N_A, TACL'24
GPT Summary- 最近の言語モデルは、長い文脈を入力として受け取ることができますが、その長い文脈をどれだけうまく利用しているかについてはまだよくわかっていません。この研究では、マルチドキュメントの質問応答とキー・バリューの検索という2つのタスクにおいて、言語モデルのパフォーマンスを分析しました。その結果、関連情報が入力文脈の始まりや終わりにある場合、パフォーマンスが最も高くなることがわかりましたが、長い文脈の中で関連情報にアクセスする必要がある場合、パフォーマンスが著しく低下します。さらに、入力文脈が長くなるにつれて、明示的に長い文脈を扱うモデルでもパフォーマンスが大幅に低下します。この分析は、言語モデルが入力文脈をどのように利用しているかをより良く理解するためのものであり、将来の長い文脈モデルのための新しい評価プロトコルを提供します。
Comment
非常に重要な知見がまとめられている
1. モデルはコンテキストのはじめと最後の情報をうまく活用でき、真ん中の情報をうまく活用できない
2. 長いコンテキストのモデルを使っても、コンテキストをより短いコンテキストのモデルよりもうまく考慮できるわけではない
3. モデルのパフォーマンスは、コンテキストが長くなればなるほど悪化する
SNLP'24での解説スライド:
https://speakerdeck.com/kichi/snlp2024
#Pocket #NLP #LanguageModel #Prompting Issue Date: 2023-11-21 System 2 Attention (is something you might need too), Jason Weston+, N_A, arXiv'23 GPT Summary- Transformerベースの大規模言語モデル(LLMs)におけるソフトアテンションは、文脈から無関係な情報を取り込む傾向があり、次のトークン生成に悪影響を与える。そこで、System 2 Attention(S2A)を導入し、LLMsが自然言語で推論し、指示に従う能力を活用して、注目すべき情報を決定する。S2Aは関連する部分のみを含むように入力コンテキストを再生成し、再生成されたコンテキストに注目して最終的な応答を引き出す。実験では、S2Aは3つのタスクで標準のアテンションベースのLLMsよりも優れた性能を発揮し、事実性と客観性を高める。 Comment
おそらく重要論文
How is System 2 Attention different from prompt engineering specialized in factual double checks?
I'm very sorry for the extremely delayed response. It's been two years, so you may no longer have a chance to see this, but I'd still like to share my thoughts.
I believe that System 2 Attention is fundamentally different in concept from prompt engineering techniques such as factual double-checking. Unlike ad-hoc prompt engineering or approaches that enrich the context by adding new facts through prompting, System 2 Attention aims to improve the model’s reasoning ability itself by mitigating the influence of irrelevant tokens. It does so by selectively generating a new context composed only of relevant tokens, in a way that resembles human System 2 thinking—that is, more objective and deliberate reasoning.
From today’s perspective, two years later, I would say that this concept is more closely aligned with what we now refer to as Context Engineering. Thank you.
#InformationRetrieval #Pocket #NLP #LanguageModel #RAG(RetrievalAugmentedGeneration) #NeurIPS #Selected Papers/Blogs #Encoder-Decoder Issue Date: 2023-12-01 Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis+, N_A, NeurIPS'20 GPT Summary- 大規模な事前学習言語モデルを使用した検索強化生成(RAG)の微調整手法を提案しました。RAGモデルは、パラメトリックメモリと非パラメトリックメモリを組み合わせた言語生成モデルであり、幅広い知識集約的な自然言語処理タスクで最先端の性能を発揮しました。特に、QAタスクでは他のモデルを上回り、言語生成タスクでは具体的で多様な言語を生成することができました。 Comment
RAGを提案した研究
Retrieverとして利用されているDense Passage Retrieval (DPR)はこちら:
- [Paper Note] Dense Passage Retrieval for Open-Domain Question Answering, Vladimir Karpukhin+, EMNLP'20, 2020.04
#Article #Tutorial #NLP #LanguageModel #LLMAgent #SoftwareEngineering #read-later #Selected Papers/Blogs #One-Line Notes Issue Date: 2025-10-04 Effective context engineering for AI agents, Anthropic, 2025.09 Comment
元ポスト:
AnthropicによるContextEngineeringに関するブログ。
ざーっとみた感じ基礎的な定義からなぜ重要なのか、retrievalの活用、longnhorizon taskでの活用、compaction(summarization)など、幅広いトピックが網羅されているように見える。
最新サーベイはこちら
- [Paper Note] A Survey of Context Engineering for Large Language Models, Lingrui Mei+, arXiv'25
所見:
#Article #DocumentSummarization #InformationRetrieval #NLP #LLMAgent #Pruning #RAG(RetrievalAugmentedGeneration) #Blog #SoftwareEngineering Issue Date: 2025-09-28 How to Fix Your Context, dbreunig.com, 2025.07 Comment
Context Poisoning, Context Distraction, Context Confusion,
Context Clashの定義とそれらの対処法について書かれている。後ほど追記する
#Article #Tutorial #NLP #LanguageModel #LLMAgent #Blog Issue Date: 2025-09-11 Context Engineering - Short-Term Memory Management with Sessions from OpenAI Agents SDK, OpenAI, 2025.09 Comment
元ポスト:
#Article #Slide Issue Date: 2025-08-22 LLM時代の検索とコンテキストエンジニアリング, Yusuke Shibui, LayerX, 2025.08 #Article #LLMAgent #Coding #Slide #SoftwareEngineering Issue Date: 2025-07-06 Claude Code の Context Engineering, schroneko, 2025.07 #Article #NLP #LanguageModel #LLMAgent #Blog #SoftwareEngineering Issue Date: 2025-07-04 Context Engineering - What it is, and techniques to consider, llamaindex, 2025.07 Comment
元ポスト:
#Article #NLP #LanguageModel #LLMAgent #Blog #SoftwareEngineering Issue Date: 2025-07-04 The New Skill in AI is Not Prompting, It's Context Engineering, PHLSCHMID, 2025.06 Comment
元ポスト:
#Article #Multi #NLP #LLMAgent #Blog #read-later Issue Date: 2025-06-17 Don’t Build Multi-Agents, Cognition, 2025.06 Comment
元ポスト:
まとめ:
</div>