MoE(Mixture-of-Experts)

#Pocket #NLP #LanguageModel #OpenWeight #VisionLanguageModel #Science
Issue Date: 2025-08-23 [Paper Note] Intern-S1: A Scientific Multimodal Foundation Model, Lei Bai+, arXiv'25 SummaryIntern-S1は、科学専門分野に特化したオープンソースの専門家型モデルで、280億の活性化パラメータを持つマルチモーダルMixture-of-Experts(MoE)モデルです。5Tトークンで事前学習され、特に科学データに焦点を当てています。事後学習では、InternBootCampを通じて強化学習を行い、Mixture-of-Rewardsを提案。評価では、一般的な推論タスクで競争力を示し、科学分野の専門的なタスクでクローズドソースモデルを上回る性能を達成しました。モデルはHugging Faceで入手可能です。 Comment元ポスト:https://x.com/iscienceluvr/status/1958894938248384542?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qscientific domainに特化したデータで継続事前学習+RL Finetuningしたドメイン特化言語モデルらしい。HF:https://huggingface.co/internlm/Intern-S1

Apache 2.0ライセンス

ベースモデルはQwen3とInternViT
・InternViT:https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5

関連:
・2529解説:https://x.com/gm8xx8/status/1959222471183225033?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Analysis #Pocket #NLP #LanguageModel
Issue Date: 2025-08-13 [Paper Note] Unveiling Super Experts in Mixture-of-Experts Large Language Models, Zunhai Su+, arXiv'25 Summaryスパースに活性化されたMixture-of-Experts(MoE)モデルにおいて、特定の専門家のサブセット「スーパ専門家(SE)」がモデルの性能に重要な影響を与えることを発見。SEは稀な活性化を示し、プルーニングするとモデルの出力が劣化する。分析により、SEの重要性が数学的推論などのタスクで明らかになり、MoE LLMがSEに依存していることが確認された。 Comment元ポスト:https://x.com/jiqizhixin/status/1955217132016505239?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QMoEにおける、特に重要な専門家であるSuper Expertsの存在・1566

を思い出す。
#Pocket #NLP #LanguageModel #Reasoning #OpenWeight #read-later
Issue Date: 2025-08-12 [Paper Note] GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models, GLM-4. 5 Team+, arXiv'25 Summary355Bパラメータを持つオープンソースのMixture-of-ExpertsモデルGLM-4.5を発表。ハイブリッド推論手法を採用し、エージェント的、推論、コーディングタスクで高いパフォーマンスを達成。競合モデルに比べて少ないパラメータ数で上位にランクイン。GLM-4.5とそのコンパクト版GLM-4.5-Airをリリースし、詳細はGitHubで公開。 Comment元ポスト:https://x.com/grad62304977/status/1954805614011453706?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q・アーキテクチャ
・MoE / sigmoid gates
・1719
・1754
・loss free balanced routing
・2442
・widthを小さく、depthを増やすことでreasoning能力改善
・GQA w/ partial RoPE
・1271
・1310
・Attention Headsの数を2.5倍(何に対して2.5倍なんだ、、?)(96個, 5120次元)にすることで(おそらく)事前学習のlossは改善しなかったがReasoning benchmarkの性能改善
・QK Normを導入しattentionのlogitsの値域を改善
・2443
・Multi Token Prediction
・2444
・1620

他モデルとの比較
image

学習部分は後で追記する・事前学習データ
・web
・英語と中国語のwebページを利用
・1944 と同様にquality scoreyをドキュメントに付与
・最も低いquality scoreの文書群を排除し、quality scoreの高い文書群をup sampling
・最もquality scoreyが大きい文書群は3.2 epoch分利用
・多くのweb pageがテンプレートから自動生成されており高いquality scoreが付与されていたが、MinHashによってdeduplicationできなかったため、 2445 を用いてdocument embeddingに基づいて類似した文書群を排除
・Multilingual
・独自にクロールしたデータとFineWeb-2 2109 から多言語の文書群を抽出し、quality classifierを適用することでeducational utilityを定量化し、高いスコアの文書群をupsamplingして利用
・code
・githubなどのソースコードhosting platformから収集
・ソースコードはルールベースのフィルタリングをかけ、その後言語ごとのquality modelsによって、high,middle, lowの3つに品質を分類
・high qualityなものはupsamplingし、low qualityなものは除外
・2446 で提案されているFill in the Middle objectiveをコードの事前学習では適用
・コードに関連するweb文書も事前学習で収集したテキスト群からルールベースとfasttextによる分類器で抽出し、ソースコードと同様のqualityの分類とサンプリング手法を適用。最終的にフィルタリングされた文書群はre-parseしてフォーマットと内容の品質を向上させた
・math & science
・web page, 本, 論文から、reasoning能力を向上させるために、数学と科学に関する文書を収集
・LLMを用いて文書中のeducational contentの比率に基づいて文書をスコアリングしスコアを予測するsmall-scaleな分類器を学習
・最終的に事前学習コーパスの中の閾値以上のスコアを持つ文書をupsampling
・事前学習は2 stageに分かれており、最初のステージでは、"大部分は"generalな文書で学習する。次のステージでは、ソースコード、数学、科学、コーディング関連の文書をupsamplingして学習する。

上記以上の細かい実装上の情報は記載されていない。

mid-training / post trainingについても後ほど追記する

#EfficiencyImprovement #Pocket #NLP #LanguageModel #ReinforcementLearning #On-Policy #Stability Issue Date: 2025-07-26 [Paper Note] Group Sequence Policy Optimization, Chujie Zheng+, arXiv'25 SummaryGroup Sequence Policy Optimization (GSPO)は、大規模言語モデルのための新しい強化学習アルゴリズムで、シーケンスの尤度に基づく重要度比を用いてトレーニングを行う。GSPOは、従来のGRPOアルゴリズムよりも効率的で高性能であり、Mixture-of-Experts (MoE) のトレーニングを安定化させる。これにより、最新のQwen3モデルにおいて顕著な改善が見られる。 Comment元ポスト:https://x.com/theturingpost/status/1948904443749302785?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q公式ポスト:https://x.com/alibaba_qwen/status/1949412072942612873?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QGRPOとGSPOの違いのGIF:
https://x.com/theturingpost/status/1953976551424634930?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Pocket #NLP #LanguageModel #Scaling Laws Issue Date: 2025-07-25 [Paper Note] Towards Greater Leverage: Scaling Laws for Efficient Mixture-of-Experts Language Models, Changxin Tian+, arXiv'25 SummaryMixture-of-Experts (MoE)アーキテクチャは、LLMsの効率的なスケーリングを可能にするが、モデル容量の予測には課題がある。これに対処するため、Efficiency Leverage (EL)を導入し、300以上のモデルを訓練してMoE構成とELの関係を調査。結果、ELはエキスパートの活性化比率と計算予算に依存し、エキスパートの粒度は非線形の調整因子として機能することが明らかに。これらの発見を基にスケーリング法則を統一し、Ling-mini-betaモデルを設計・訓練した結果、計算資源を7倍以上節約しつつ、6.1Bの密なモデルと同等の性能を達成。研究は効率的なMoEモデルのスケーリングに関する基盤を提供する。 Comment元ポスト:https://x.com/rosinality/status/1948255608286990528?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Privacy Issue Date: 2025-07-11 [Paper Note] FlexOlmo: Open Language Models for Flexible Data Use, Weijia Shi+, arXiv'25 SummaryFlexOlmoは、データ共有なしでの分散トレーニングを可能にする新しい言語モデルで、異なるモデルパラメータが独立してトレーニングされ、データ柔軟な推論を実現します。混合専門家アーキテクチャを採用し、公開データセットと特化型セットでトレーニングされ、31の下流タスクで評価されました。データライセンスに基づくオプトアウトが可能で、平均41%の性能改善を達成し、従来の手法よりも優れた結果を示しました。FlexOlmoは、データ所有者のプライバシーを尊重しつつ、閉じたデータの利点を活かすことができます。 Comment元ポスト:https://x.com/asap2650/status/1943184037419585695?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qデータのオーナー側がプロプライエタリデータを用いてエキスパート(FFNとRouter embeddings)を学習し、それをpublicにシェアすることで利用できるようにする。データオーナー側はデータそのものを提供するのではなく、モデルのパラメータを共有するだけで済み、かつ自分たちのエキスパートをRouter側で利用するか否かは制御可能だから、opt-in/outが制御できる、みたいな話っぽい?
image
#NeuralNetwork #Analysis #MachineLearning #Pocket #ICML Issue Date: 2025-07-11 [Paper Note] Mixture of Experts Provably Detect and Learn the Latent Cluster Structure in Gradient-Based Learning, Ryotaro Kawata+, ICML'25 SummaryMixture of Experts (MoE)は、入力を専門家に動的に分配するモデルのアンサンブルであり、機械学習で成功を収めているが、その理論的理解は遅れている。本研究では、MoEのサンプルおよび実行時間の複雑さを回帰タスクにおけるクラスタ構造を通じて理論的に分析し、バニラニューラルネットワークがこの構造を検出できない理由を示す。MoEは各専門家の能力を活用し、問題をより単純なサブ問題に分割することで、非線形回帰におけるSGDのダイナミクスを探求する初めての試みである。 Comment元ポスト:https://x.com/btreetaiji/status/1943226334463086989?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #EfficiencyImprovement #Pretraining #Pocket #NLP #LanguageModel #ICLR Issue Date: 2025-06-25 [Paper Note] Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization, Taishi Nakamura+, ICLR'25 SummaryDrop-Upcycling手法を提案し、MoEモデルのトレーニング効率を向上。事前にトレーニングされた密なモデルの知識を活用しつつ、一部の重みを再初期化することで専門家の専門化を促進。大規模実験により、5.9BパラメータのMoEモデルが13B密なモデルと同等の性能を達成し、トレーニングコストを約1/4に削減。すべての実験リソースを公開。 CommentOpenReview:https://openreview.net/forum?id=gx1wHnf5Vp関連:
・1546提案手法の全体像とDiversity re-initializationの概要。元のUpcyclingでは全てidenticalな重みでreplicateされていたため、これが個々のexpertがlong termでの学習で特化することの妨げになり、最終的に最大限のcapabilityを発揮できず、収束が遅い要因となっていた。これを、Upcyclingした重みのうち、一部のindexのみを再初期化することで、replicate元の知識を保持しつつ、expertsの多様性を高めることで解決する。
image
image

提案手法は任意のactivation function適用可能。今回はFFN Layerのactivation functionとして一般的なSwiGLUを採用した場合で説明している。

Drop-Upcyclingの手法としては、通常のUpcyclingと同様、FFN Layerの重みをn個のexpertsの数だけreplicateする。その後、re-initializationを実施する比率rに基づいて、[1, intermediate size d_f]の範囲からrd_f個のindexをサンプリングする。最終的にSwiGLU、およびFFNにおける3つのWeight W_{gate, up, down}において、サンプリングされたindexと対応するrow/columnと対応する重みをre-initializeする。

re-initializeする際には、各W_{gate, up, down}中のサンプリングされたindexと対応するベクトルの平均と分散をそれぞれ独立して求め、それらの平均と分散を持つ正規分布からサンプリングする。

学習の初期から高い性能を発揮し、long termでの性能も向上している。また、learning curveの形状もscratchから学習した場合と同様の形状となっており、知識の転移とexpertsのspecializationがうまく進んだことが示唆される。
image解説:https://llm-jp.nii.ac.jp/news/post-566/
#Pocket #NLP #LanguageModel #ICML #Scaling Laws Issue Date: 2025-06-21 [Paper Note] Scaling Laws for Upcycling Mixture-of-Experts Language Models, Seng Pei Liew+, ICML'25 SummaryLLMsの事前学習は高コストで時間がかかるため、アップサイクリングとMoEモデルの計算効率向上が提案されている。本研究では、アップサイクリングをMoEに適用し、データセットのサイズやモデル構成に依存するスケーリング法則を特定。密なトレーニングデータとアップサイクリングデータの相互作用が効率を制限することを示し、アップサイクリングのスケールアップに関する指針を提供。 Comment元ポスト:https://x.com/sbintuitions/status/1935970879923540248?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QOpenReview:https://openreview.net/forum?id=ZBBo19jldX関連:
・1546
#EfficiencyImprovement #Pocket #NLP #LanguageModel #Transformer #Attention #LLMServing #Architecture #SoftwareEngineering Issue Date: 2025-05-20 Insights into DeepSeek-V3: Scaling Challenges and Reflections on Hardware for AI Architectures, Chenggang Zhao+, arXiv'25 SummaryDeepSeek-V3は、2,048台のNVIDIA H800 GPUでトレーニングされ、ハードウェア制約に対処するための共同設計を示す。メモリ効率向上のためのマルチヘッド潜在注意や、計算と通信の最適化を図る専門家の混合アーキテクチャ、FP8混合精度トレーニングなどの革新を強調。ハードウェアのボトルネックに基づく将来の方向性について議論し、AIワークロードに応えるためのハードウェアとモデルの共同設計の重要性を示す。 Comment元ポスト:https://x.com/deedydas/status/1924512147947848039?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #PEFT(Adaptor/LoRA) #EMNLP Issue Date: 2025-08-06 [Paper Note] Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models, Zihan Wang+, EMNLP'24 Summary本研究では、Mixture-of-Experts(MoE)アーキテクチャを持つ大規模言語モデル(LLMs)に対するパラメータ効率の良いファインチューニング(PEFT)手法を提案。主な内容は、(1) タスクごとの専門家の活性化分布の集中度の調査、(2) Expert-Specialized Fine-Tuning(ESFT)の提案とその効果、(3) MoEアーキテクチャの専門家特化型ファインチューニングへの影響の分析。実験により、ESFTがチューニング効率を向上させ、フルパラメータファインチューニングに匹敵またはそれを上回る性能を示すことが確認された。 Comment元ポスト:https://x.com/wzihanw/status/1952965138845450413?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QMoEアーキテクチャを持つLLMにおいて、finetuningを実施したいタスクに関連する専門家を特定し、そのほかのパラメータをfreezeした上で当該専門家のみをtrainableとすることで、効率的にfinetuningを実施する手法
image

専門家を見つける際には専門家ごとにfinetuningしたいタスクに対するrelevance scoreを計算する。そのために、2つの手法が提案されており、training dataからデータをサンプリングし
・全てのサンプリングしたデータの各トークンごとのMoE Routerのgateの値の平均値をrelevant scoreとする方法
・全てのサンプリングしたデータの各トークンごとに選択された専門家の割合
の2種類でスコアを求める。閾値pを決定し、閾値以上のスコアを持つ専門家をtrainableとする。

LoRAよりもmath, codeなどの他ドメインのタスク性能を劣化させず、Finetuning対象のタスクでFFTと同等の性能を達成。
image

LoRAと同様にFFTと比較し学習時間は短縮され、学習した専門家の重みを保持するだけで良いのでストレージも節約できる。
image
#Pocket #NLP #LanguageModel #ACL Issue Date: 2025-01-06 DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, Damai+, ACL'24, 2024.08 SummaryDeepSeekMoEアーキテクチャは、専門家の専門性を高めるために、専門家を細分化し柔軟な組み合わせを可能にし、共有専門家を設けて冗長性を軽減する。2BパラメータのDeepSeekMoEは、GShardと同等の性能を達成し、同じパラメータ数の密なモデルに近づく。16Bパラメータにスケールアップした際も、計算量を約40%に抑えつつ、LLaMA2と同等の性能を示した。 #Pretraining #MachineLearning #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #PostTraining Issue Date: 2024-11-25 Sparse Upcycling: Training Mixture-of-Experts from Dense Checkpoints, Aran Komatsuzaki+, ICLR'23 Summaryスパース活性化モデルは、計算コストを抑えつつ密なモデルの代替として注目されているが、依然として多くのデータを必要とし、ゼロからのトレーニングは高コストである。本研究では、密なチェックポイントからスパース活性化Mixture-of-Expertsモデルを初期化する「スパースアップサイクリング」を提案。これにより、初期の密な事前トレーニングのコストを約50%再利用し、SuperGLUEやImageNetで密なモデルを大幅に上回る性能を示した。また、アップサイクリングされたモデルは、ゼロからトレーニングされたスパースモデルよりも優れた結果を得た。 Comment斜め読みしかできていないが、Mixture-of-Expertsを用いたモデルをSFT/Pretrainingする際に、既存のcheckpointの重みを活用することでより効率的かつ性能向上する方法を提案。MoE LayerのMLPを全て既存のcheckpointにおけるMLPの重みをコピーして初期化する。Routerはスクラッチから学習する。
image

継続事前学習においては、同じ学習時間の中でDense Layerを用いるベースラインと比較してでより高い性能を獲得。
image
Figure2で継続事前学習したモデルに対して、フルパラメータのFinetuningをした場合でもUpcyclingは効果がある(Figure3)。

特にPretrainingではUpcyclingを用いたモデルの性能に、通常のMoEをスクラッチから学習したモデルが追いつくのに時間がかかるとのこと。特に図右側の言語タスクでは、120%の学習時間が追いつくために必要だった。
image

Sparse Upcycingと、Dense tilingによる手法(warm start; 元のモデルに既存の層を複製して新しい層を追加する方法)、元のモデルをそれぞれ継続事前学習すると、最も高い性能を獲得している。
image

(すごい斜め読みなのでちょっも自信なし、、、)
#EfficiencyImprovement #Pretraining #Pocket #NLP #Transformer #Architecture #Admin'sPick Issue Date: 2025-02-11 Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, William Fedus+, JMLR'22 SummarySwitch Transformerを提案し、Mixture of Experts (MoE)の複雑さや通信コスト、トレーニングの不安定性を改善。これにより、低精度フォーマットでの大規模スパースモデルのトレーニングが可能になり、最大7倍の事前トレーニング速度向上を実現。さらに、1兆パラメータのモデルを事前トレーニングし、T5-XXLモデルに対して4倍の速度向上を達成。 #NeuralNetwork #Pocket #NLP #ICLR Issue Date: 2025-04-29 Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, Noam Shazeer+, ICLR'17 Summary条件付き計算を用いたスパースゲーテッドミクスチャーオブエキスパート(MoE)レイヤーを導入し、モデル容量を1000倍以上向上。学習可能なゲーティングネットワークが各例に対してスパースなエキスパートの組み合わせを決定。最大1370億パラメータのMoEをLSTM層に適用し、言語モデリングや機械翻訳で低コストで優れた性能を達成。 CommentMixture-of-Experts (MoE) Layerを提案した研究 #NeuralNetwork #MachineLearning #Pocket Issue Date: 2025-04-29 Adaptive Mixture of Local Experts, Jacobs+, Neural Computation'91 CommentMixture of Expertsの起源と思ったのだが、下記研究の方が年号が古いようだが、こちらが起源ではなのか・・・?だがアブスト中に上記論文で提案されたMoEのパフォーマンスを比較する、といった旨の記述があるので時系列がよくわからない。
[Evaluation of Adaptive Mixtures of Competing Experts](http://www.cs.toronto.edu/~fritz/absps/nh91.pdf)参考: https://speakerdeck.com/onysuke/mixture-of-expertsniguan-suruwen-xian-diao-cha
#Article #NLP #LanguageModel #LongSequence #OpenWeight Issue Date: 2025-08-08 Qwen3-235B-A22B-Instruct-2507, Qwen Team, 2025.08 Commentimage

性能向上した上に1M tokens を扱える。元ポスト:https://x.com/alibaba_qwen/status/1953760230141309354?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

Dual Chunk Attention (DCA), MInference...?という技術により品質を維持しながらinference速度アップとのこと、

DCAは全体の系列をmanageableなチャンクに分割して処理しながら全体のcoherenceを維持する手法で、MInferenceは鍵となるtokenの交互作用にのみフォーカスするsparse attentionとのこと。
#Article #NLP #LanguageModel #Reasoning #OpenWeight #AttentionSinks #read-later #Admin'sPick Issue Date: 2025-08-05 gpt-oss-120b, OpenAI, 2025.08 Commentblog:https://openai.com/index/introducing-gpt-oss/

HF:
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.mdアーキテクチャで使われている技術まとめ:
・https://x.com/gneubig/status/1952799735900979219?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/yampeleg/status/1952875217367245195?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/adamzweiger/status/1952799642636148917?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/cwolferesearch/status/1956132685102887059?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・こちらにも詳細に論文がまとめられている上記ポスト中のアーキテクチャの論文メモリンク(管理人が追加したものも含む)
・Sliding Window Attention
・2388
・2359
・MoE
・1754
・RoPE w/ YaRN
・1310
・2338
・Attention Sinks
・1861
・Attention Sinksの定義とその気持ちについてはこのメモを参照のこと。
・1860
・Attention Sinksが実際にどのように効果的に作用しているか?についてはこちらのメモを参照。
・1862
・https://x.com/gu_xiangming/status/1952811057673642227?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・Attention Sinkの導入により、decodei-onlyモデルの深い層でのrepresentationのover mixingを改善し、汎化性能を高め、promptに対するsensitivityを抑えていると考えられる。
・GQA
・1271
・SwiGLU
・1311-
・(Attentionの計算に利用する) SoftmaxへのLearned bias の導入 (によるスケーリング)
・1863
・1866
・Softmaxはlong contextになると、attentionの分布が均一になり、重要な情報にattendする能力が下がるためスケーリングが必要で、そのために分母にlearnedなbiasを導入していると考えられる。Llamaや上記研究では分子に係数としてlearnableなパラメータを導入しているが、少し形式が違う。もしかしたら解釈が違うかもしれない。・group size 8でGQAを利用
・Context Windowは128k
・学習データの大部分は英語のテキストのみのデータセット
・STEM, Coding, general knowledgeにフォーカス
・https://openai.com/index/gpt-oss-model-card/

あとで追記する他Open Weight Modelとのベンチマークスコア比較:
・https://x.com/gneubig/status/1952795149584482665?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/artificialanlys/status/1952887733803991070?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/terryyuezhuo/status/1952829578130670053?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/artificialanlys/status/1952823565642023044?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・long context
・https://x.com/thienhn97/status/1953152808334852124?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・Multihop QA解説:
https://x.com/gm8xx8/status/1952915080229863761?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qlearned attention sinks, MXFP4の解説:
https://x.com/carrigmat/status/1952779877569978797?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QSink Valueの分析:
https://x.com/wenhaocha1/status/1952851897414762512?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qgpt-oss の使い方:
https://note.com/npaka/n/nf39f327c3bde?sub_rt=share_sb9fd064b2-338a-4f8d-953c-67e458658e39Qwen3との深さと広さの比較:
・2364Phi4と同じtokenizerを使っている?:
https://x.com/bgdidenko/status/1952829980389343387?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qpost-training / pre-trainingの詳細はモデルカード中に言及なし:
・https://x.com/teortaxestex/status/1952806676492689652?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/okoge_kaz/status/1952787196253265955?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qattention headsのsoftmaxの分母にlearnableなパラメータが導入されている:
https://x.com/okoge_kaz/status/1952785895352041784?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

・1866

で得られている知見と同様に、long contextになった場合にsoftmaxの値が平坦になる問題に対して、learnableなパラメータを導入してスケーリングすることで対処しているのだと考えられる。使ってみた所見:
・https://x.com/imai_eruel/status/1952825403263046073?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/wenhuchen/status/1953100554793828406?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
・https://x.com/jasondeanlee/status/1953031988635451556?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qライセンスに関して:

> Apache 2.0 ライセンスおよび当社の gpt-oss 利用規約に基づくことで利用可能です。

引用元: https://openai.com/ja-JP/index/gpt-oss-model-card/

gpt-oss利用規約: https://github.com/openai/gpt-oss/blob/main/USAGE_POLICYcookbook全体:https://cookbook.openai.com/topic/gpt-ossgpt-oss-120bをpythonとvLLMで触りながら理解する:https://tech-blog.abeja.asia/entry/gpt-oss-vllm
#Article #EfficiencyImprovement #NLP #LanguageModel #Programming #Reasoning Issue Date: 2025-08-02 Qwen3-Coder-30B-A3B-Instruct, QwenTeam, 2025.08 Comment元ポスト:https://x.com/alibaba_qwen/status/1950925444057792808?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qimage #Article #ComputerVision #NLP #LanguageModel #MulltiModal #OpenWeight #VideoGeneration/Understandings Issue Date: 2025-07-29 Wan2.2, Alibaba Wan, 2025.07 Comment元ポスト:https://x.com/alibaba_wan/status/1949827662416937443?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q初のMoEによるOpen WeightなVideo generationモデルで、直接的に明るさや、カラー、カメラの動きなどを制御でき、text to video, image to video, unified video generationをサポートしている模様 #Article #Tutorial #Metrics #NLP #LanguageModel #LLMServing #SoftwareEngineering #Admin'sPick #Parallelism #Inference #Batch Issue Date: 2025-07-21 LLM推論に関する技術メモ, iwashi.co, 2025.07 Comment```
メモリ (GB) = P × (Q ÷ 8) × (1 + オーバーヘッド)

・P:パラメータ数(単位は10億)
・Q:ビット精度(例:16、32)、8で割ることでビットをバイトに変換
・オーバーヘッド(%):推論中の追加メモリまたは一時的な使用量(例:KVキャッシュ、アクティベーションバッファ、オプティマイザの状態)
```

↑これ、忘れがちなのでメモ…関連(量子化関連研究):
・2264
・1570
・1043すごいメモだ…勉強になります
#Article #NLP #LanguageModel #Optimizer #OpenWeight #read-later #Admin'sPick #Stability Issue Date: 2025-07-12 Kimi K2: Open Agentic Intelligence, moonshotai, 2025.07 Comment元ポスト:https://x.com/kimi_moonshot/status/1943687594560332025?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q1T-A32Bのモデル。さすがに高性能。

image

(追記) Reasoningモデルではないのにこの性能のようである。1T-A32Bのモデルを15.5Tトークン訓練するのに一度もtraining instabilityがなかったらしい
元ポスト:https://x.com/eliebakouch/status/1943689105721667885?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連:
・2188量子化したモデルが出た模様:
https://x.com/ivanfioravanti/status/1944069021709615119?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

仕事早すぎるDeepSeek V3/R1とのアーキテクチャの違い:
https://x.com/rasbt/status/1944056316424577525?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

MLAのヘッドの数が減り、エキスパートの数を増加させている解説ポスト:https://x.com/hillbig/status/1944902706747072678?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q利用されているOptimizer:
・22022つほどバグがあり修正された模様:
https://x.com/kimi_moonshot/status/1945050874067476962?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qchatbot arenaでOpenLLMの中でトップのスコア
元ポスト:https://x.com/lmarena_ai/status/1945866381880373490?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qテクニカルペーパーが公開:https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf

元ポスト:https://x.com/iscienceluvr/status/1947384629314396302?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qテクニカルレポートまとめ:https://x.com/scaling01/status/1947400424622866793?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q以下のような技術が使われている模様
・1937
・MLA 1621
・MuonCip
・MuonOptimizer 2202
・QK-Clip
・参考(こちらはLayerNormを使っているが): 1202
・RLVR
・1719
・Self-Critique
・関連: 2274
・2017
・Temperature Decay
・最初はTemperatureを高めにした探索多めに、後半はTemperatureを低めにして効用多めになるようにスケジューリング
・Tool useのためのSynthetic Data

ImageReward Hackingに対処するため、RLVRではなくpairwise comparisonに基づくself judging w/ critique を利用きており、これが非常に効果的な可能性があるのでは、という意見がある:
https://x.com/grad62304977/status/1953408751521632401?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Article #ComputerVision #NLP #LanguageModel #MulltiModal #OpenWeight Issue Date: 2025-06-30 ERNIE 4.5 Series, ERNIE TEAM, 2025.06 CommentTech Report:https://yiyan.baidu.com/blog/publication/ERNIE_Technical_Report.pdf元ポスト:https://x.com/paddlepaddle/status/1939535276197744952?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q解説ポスト:https://x.com/gm8xx8/status/1939576393098023188?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Article #NLP #LanguageModel #Reasoning #OpenWeight Issue Date: 2025-06-17 MiniMax-M1, MiniMax, 2025.06 Comment元ポスト:https://x.com/arankomatsuzaki/status/1934642204397744137?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QvLLMでのservingが推奨されており、コンテキストは1M、456BのMoEアーキテクチャでactivation weightは46B公式ポスト:https://x.com/minimax__ai/status/1934637031193514237?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QAgentもリリースした模様:
https://x.com/minimax__ai/status/1945550814728376803?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Article #NLP #Library #Supervised-FineTuning (SFT) #Blog #OpenWeight #PostTraining Issue Date: 2025-05-11 ms-swiftによるMegatron-LMベースのQwen3のファインチューニング, Aratako, 2025.05 Comment元ポスト:https://x.com/aratako_lm/status/1921401994532487174?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QMegatron-SWIFTというAlibaba製のライブラリを利用しQwen3の継続事前学習とSFTを実施する方法を、ベストプラクティスに則って記述し、かつ著者自身が学習したモデルも公開している。(おそらくインスタンス代は自腹なので)すごい...!!
Megatron-SWIFTはMoEアーキテクチャを採用したモデルであれば、DeepSpeed Zero3 [^1]と比べて10倍程度のスループットで学習できる模様(早い)。一方MoEアーキテクチャでないモデルの場合はそこまで大きな差はない。

[^1]: A100 80GB 2ノードでは、Qwen3-30B-A3Bは、DeepSpeed-Zero2ではOOMとなり載らないようだ…。なんとリソースに厳しいこと…(涙)
#Article #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) #ReinforcementLearning #InstructionTuning #Blog #LongSequence #MultiLingual #OpenWeight #PostTraining Issue Date: 2025-04-29 Qwen3, Qwen Team, 2025.04 Comment・119言語をサポート
・MoEモデル 1911
・30B-A3B / 235B-A22N
・128K context window
・Qwen2.5はMoEを採用していないので新たなアーキテクチャとなる
・Denseモデル(非MoEモデル)も公開
・0.6B -・32B
・32K -・128K context window
・Thinking/Non-thinking の切り替えが切り替えが可能
・スイッチは自動的に実施されるが、ユーザが明示的に `/think`, `/no_think` を user_promptの末尾に追加することで制御することも可能
・Pre-training
・データ
・36 trillion tokensによって学習(Qwen-2.5の2倍)
・学習データではwebデータに加えて、PDF-likeな文書群からQwen2.5-VL 1835 によってテキストを抽出し、Qwen2.5 で抽出された内容の品質を改善し利用
・また、math / code に関するデータを追加するために、Qwen2.5-Math / Qwen2.5-Coderを用いて合成データを作成(textbooks / QA pairs / code snippets 766 )
・事前学習のステップ
・S1: context長が4kの30 trillion tokenで事前学習
・S2: STEM / coding / reasoning task などのknowledge-intensiveデータの比率を増やして継続事前学習 (これがおそらく 5 trillion token程度?)
・Final Stage: context長を32kに拡大し高品質なlong-context dataで継続事前学習
・これによりBaseモデルが完成し、Qwen3-235B全体のうち10%程度のActive Parameterの利用するだけで(i.e., 22Bで)、Qwen2.5-72B Baseと同等以上の性能達成
・Post-training
・S1: long-CoT cold start
・数学/coding/logical reasoning/STEMなどの多様なlong CoTデータを用いてSFT 1749
・S2: reasoning-based RL
・rule-based (verifiable) rewards によるRL 1719
・S1/S2の流れは 1746 に有効性が示されている通り、long CoT DataによるSFT -> RLを実施
・S3: thinking mode fusion
・S2データを用いてlong CoTデータとinstruction tuningデータ(非Long CoT)を生成し、Thinking/Non-thinkingを自動的に選択し生成するように学習(SFT or RLは記述なし)
・S4: general RL
・20以上の一般的なドメインのタスクを通じて一般的な能力の向上と、safetyに関するalignmentの実施(e.g., instruction following, format following, agent能力など)BestPracticeに関するポスト:https://x.com/ivanfioravanti/status/1916934241281061156?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q解説:https://x.com/hillbig/status/1917712050983428400?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q