Parallelism
Issue Date: 2025-10-25 [Paper Note] AsyncHZP: Hierarchical ZeRO Parallelism with Asynchronous Scheduling for Scalable LLM Training, Huawei Bai+, arXiv'25, 2025.10 GPT Summary- 非同期階層ゼロ並列処理(AsyncHZP)を提案し、シンプルさとメモリ効率を保ちながら、トレーニング効率を向上。従来のZeROの通信オーバーヘッドを削減し、パラメータや勾配の再シャーディングを適応的に行う。マルチストリーム非同期スケジューリングにより通信と計算を重ね合わせ、メモリの断片化を最小限に抑える。DenseおよびMixture-of-Expertsモデルでの評価により、AsyncHZPが従来のND並列処理を上回る性能を示した。 Comment
元ポスト:
#EfficiencyImprovement #Pocket #NLP #LanguageModel #ACL
Issue Date: 2025-05-16 Sequence Parallelism: Long Sequence Training from System Perspective, Li+, ACL'23 Comment
入力系列をチャンクに分割して、デバイスごとに担当するチャンクを決めることで原理上無限の長さの系列を扱えるようにした並列化手法。系列をデバイス間で横断する場合attention scoreをどのように計算するかが課題になるが、そのためにRing Self attentionと呼ばれるアルゴリズムを提案している模様。また、MLPブロックとMulti Head Attentonブロックの計算も、BatchSize * Sequence Lengthの大きさが、それぞれ32*Hidden Size, 16*Attention Head size *
# of Attention Headよりも大きくなった場合に、Tensor Parallelismよりもメモリ効率が良くなるらしい。
Data Parallel, Pipeline Parallel, Tensor Parallel、全てに互換性があるとのこと(併用可能)
そのほかの並列化の解説については
- 大規模モデルを支える分散並列学習のしくみ Part1
を参照のこと。
#Article #Multi #EfficiencyImprovement #ReinforcementLearning #AIAgents #Blog #ProprietaryLLM #ContextEngineering #KeyPoint Notes
Issue Date: 2025-10-18 Introducing SWE-grep and SWE-grep-mini: RL for Multi-Turn, Fast Context Retrieval, Cognition, 2025.10 Comment
元ポスト:
最大で4 turnの間8つのツールコール(guessingとしては従来モデルは1--2, Sonnet-4.5は1--4)を並列する(3 turnは探索、最後の1 turnをanswerのために使う) parallel tool calls を効果的に実施できるように、on policy RLでマルチターンのRLを実施することで、高速で正確なcontext retrievalを実現した、という感じらしい。
従来のembedding-basedなdense retrieverは速いが正確性に欠け、Agenticなsearchは正確だが遅いという双方の欠点を補う形。
parallel tool callというのは具体的にどういうtrajectoryになるのか…?
```
メモリ (GB) = P × (Q ÷ 8) × (1 + オーバーヘッド)
- P:パラメータ数(単位は10億)
- Q:ビット精度(例:16、32)、8で割ることでビットをバイトに変換
- オーバーヘッド(%):推論中の追加メモリまたは一時的な使用量(例:KVキャッシュ、アクティベーションバッファ、オプティマイザの状態)
```
↑これ、忘れがちなのでメモ…
関連(量子化関連研究):
- [Paper Note] AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, Ji Lin+, MLSys'24
- SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, Guangxuan Xiao+, ICML'23
- GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers, Elias Frantar+, N/A, ICLR'23
すごいメモだ…勉強になります