Privacy
#Pocket#NLP#LanguageModel#MoE(Mixture-of-Experts)
Issue Date: 2025-07-11 Paper Note FlexOlmo: Open Language Models for Flexible Data Use, Weijia Shi+, arXiv25 SummaryFlexOlmoは、データ共有なしでの分散トレーニングを可能にする新しい言語モデルで、異なるモデルパラメータが独立してトレーニングされ、データ柔軟な推論を実現します。混合専門家アーキテクチャを採用し、公開データセットと特化型セットでトレーニングされ、31の下流タスクで評価されました。データライセンスに基づくオプトアウトが可能で、平均41%の性能改善を達成し、従来の手法よりも優れた結果を示しました。FlexOlmoは、データ所有者のプライバシーを尊重しつつ、閉じたデータの利点を活かすことができます。 Comment元ポスト:https://x.com/asap2650/status/1943184037419585695?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qデータのオーナー側がプロプライエタリデータを用いてエキスパート(FFNとRouter embeddings)を学習し、それをpublicにシェアすることで利用できるようにする。データオーナー側はデータそのものを提供するのではなく、モデルのパラメータを共有するだけで済み、かつ自分たちのエキスパートをRouter側で利用するか否かは制御可能だから、opt-in/outが制御できる、みたいな話っぽい? 
Issue Date: 2025-07-11 Paper Note FlexOlmo: Open Language Models for Flexible Data Use, Weijia Shi+, arXiv25 SummaryFlexOlmoは、データ共有なしでの分散トレーニングを可能にする新しい言語モデルで、異なるモデルパラメータが独立してトレーニングされ、データ柔軟な推論を実現します。混合専門家アーキテクチャを採用し、公開データセットと特化型セットでトレーニングされ、31の下流タスクで評価されました。データライセンスに基づくオプトアウトが可能で、平均41%の性能改善を達成し、従来の手法よりも優れた結果を示しました。FlexOlmoは、データ所有者のプライバシーを尊重しつつ、閉じたデータの利点を活かすことができます。 Comment元ポスト:https://x.com/asap2650/status/1943184037419585695?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qデータのオーナー側がプロプライエタリデータを用いてエキスパート(FFNとRouter embeddings)を学習し、それをpublicにシェアすることで利用できるようにする。データオーナー側はデータそのものを提供するのではなく、モデルのパラメータを共有するだけで済み、かつ自分たちのエキスパートをRouter側で利用するか否かは制御可能だから、opt-in/outが制御できる、みたいな話っぽい? 