DocumentSummarization

#NaturalLanguageGeneration #Pocket #NLP #Dataset #LanguageModel #Annotation
Issue Date: 2024-05-15 Benchmarking Large Language Models for News Summarization, Tianyi Zhang+, N_A, arXiv'23 SummaryLLMsの成功の理由を理解するために、異なる事前学習方法、プロンプト、およびモデルスケールにわたる10つのLLMsに対する人間の評価を行った。その結果、モデルサイズではなく、指示の調整がLLMのゼロショット要約能力の鍵であることがわかった。また、LLMsの要約は人間の執筆した要約と同等と判断された。 Comment・ニュース記事の高品質な要約を人間に作成してもらい、gpt-3.5を用いてLLM-basedな要約も生成

・annotatorにそれぞれの要約の品質をスコアリングさせたデータセットを作成
#NaturalLanguageGeneration #Pocket #NLP #LanguageModel
Issue Date: 2023-09-17 From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting, Griffin Adams+, N_A, arXiv'23 Summary要約は詳細でエンティティ中心的でありながら、理解しやすくすることが困難です。この課題を解決するために、私たちは「密度の連鎖」(CoD)プロンプトを使用して、GPT-4の要約を生成します。CoDによって生成された要約は抽象的であり、リードバイアスが少なく、人間に好まれます。また、情報量と読みやすさのトレードオフが存在することも示されました。CoD要約は無料で利用できます。 Comment論文中のprompt例。InformativeなEntityのCoverageを増やすようにイテレーションを回し、各Entityに関する情報(前ステップで不足している情報は補足しながら)を具体的に記述するように要約を生成する。

image

人間が好むEntityのDensityにはある程度の閾値がある模様(でもこれは人や用途によって閾値が違うようねとは思う)。

image

人手評価とGPT4による5-scale の評価を実施している。定性的な考察としては、主題と直接的に関係ないEntityの詳細を述べるようになっても人間には好まれない(右例)ことが述べられている。

image



image

#MachineTranslation #NaturalLanguageGeneration #Metrics #Pocket #NLP #Evaluation #LM-based #Coherence
Issue Date: 2023-08-13 DiscoScore: Evaluating Text Generation with BERT and Discourse Coherence, Wei Zhao+, N_A, EACL'23 Summary本研究では、文章の一貫性を評価するための新しい指標であるDiscoScoreを紹介します。DiscoScoreはCentering理論に基づいており、BERTを使用して談話の一貫性をモデル化します。実験の結果、DiscoScoreは他の指標よりも人間の評価との相関が高く、システムレベルでの評価でも優れた結果を示しました。さらに、DiscoScoreの重要性とその優位性についても説明されています。

#Pocket #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 RISE: Leveraging Retrieval Techniques for Summarization Evaluation, David Uthus+, N_A, Findings of ACL'23 Summary自動要約の評価は困難であり、従来のアプローチでは人間の評価には及ばない。そこで、私たちはRISEという新しいアプローチを提案する。RISEは情報検索の技術を活用し、ゴールドリファレンスの要約がなくても要約を評価することができる。RISEは特に評価用のリファレンス要約が利用できない新しいデータセットに適しており、SummEvalベンチマークでの実験結果から、RISEは過去のアプローチと比較して人間の評価と高い相関を示している。また、RISEはデータ効率性と言語間の汎用性も示している。 Comment概要

Dual-Encoderを用いて、ソースドキュメントとシステム要約をエンコードし、dot productをとることでスコアを得る手法。モデルの訓練は、Contrastive Learningで行い、既存データセットのソースと参照要約のペアを正例とみなし、In Batch trainingする。

image



分類

Reference-free, Model-based, ソース依存で、BARTScore 960 とは異なり、文書要約データを用いて学習するため、要約の評価に特化している点が特徴。

image



モデル

Contrastive Learning

Contrastive Learningを用い、hard negativeを用いたvariantも検証する。また、訓練データとして3種類のパターンを検証する:

1. in-domain data: 文書要約データを用いて訓練し、ターゲットタスクでどれだけの性能を発揮するかを見る

2. out-of-domain data: 文書要約以外のデータを用いて訓練し、どれだけ新しいドメインにモデルがtransferできるかを検証する

3. in-and-out-domain data: 両方やる



ハードネガティブの生成

Lexical Negatives, Model Negatives, 双方の組み合わせの3種類を用いてハードネガティブを生成する。

Lexical Negatives

参照要約を拡張することによって生成する。目的は、もともとの参照要約と比較して、poor summaryを生成することにある。Data Augmentationとして、以下の方法を試した:

・Swapping noun entities: 要約中のエンティティを、ソース中のエンティティンとランダムでスワップ

・Shuffling words: 要約中の単語をランダムにシャッフル

・Dropping words: 要約中の単語をランダムに削除

・Dropping characters: 要約中の文字をランダムに削除

・Swapping antonyms: 要約中の単語を対義語で置換

Model Negatives

データセットの中から負例を抽出する。目的は、参照要約と類似しているが、負例となるサンプルを見つけること。これを実現するために、まずRISE modelをデータセットでfinetuningし、それぞれのソースドキュメントの要約に対して、類似した要約をマイニングする。すべてのドキュメントと要約をエンコードし、top-nの最も類似した要約を見つけ、これをハードネガティブとして、再度モデルを訓練する。

両者の組み合わせ

まずlexical negativesでモデルを訓練し、モデルネガティブの抽出に活用する。抽出したモデルネガティブを用いて再度モデルを訓練することで、最終的なモデルとする。



実験

学習手法

SummEval 984 を用いて人手評価と比較してどれだけcorrelationがあるかを検証。SummEvalには16種類のモデルのアウトプットに対する、CNN / Daily Mail の100 examplesに対して、品質のアノテーションが付与されている。expert annotationを用いて、Kendall's tauを用いてシステムレベルのcorrelationを計算した。contextが短い場合はT5, 長い場合はLongT5, タスクがマルチリンガルな場合はmT5を用いて訓練した。訓練データとしては

・CNN / Daily Mail

・Multi News

・arXiv

・PubMed

・BigPatent

・SAMSum

・Reddit TIFU

・MLSUM

等を用いた。これによりshort / long contextの両者をカバーできる。CNN / Daily Mail, Reddiit TIFU, Multi-Newsはshort-context, arXiv, PubMed, BigPatent, Multi-News(長文のものを利用)はlonger contextとして利用する。

比較するメトリック

ROUGE, chrF, SMS, BARTScore, SMART, BLEURT, BERTScore, Q^2, T5-ANLI, PRISMと比較した。結果をみると、Consistency, Fluency, Relevanceで他手法よりも高い相関を得た。Averageでは最も高いAverageを獲得した。in-domain dataで訓練した場合は、高い性能を発揮した。our-of-domain(SAMSum; Dialogue要約のデータ)データでも高い性能を得た。

image



Ablation

ハードネガティブの生成方法

Data Augmentationは、swapping entity nouns, randomly dropping wordsの組み合わせが最も良かった。また、Lexical Negativesは、様々なデータセットで一貫して性能が良かったが、Model NegativesはCNN/DailyMailに対してしか有効ではなかった。これはおそらく、同じタスク(テストデータと同じデータ)でないと、Model Negativesは機能しないことを示唆している。ただし、Model Negativesを入れたら、何もしないよりも性能向上するから、何らかの理由でlexical negativesが生成できない場合はこっち使っても有用である。

image



Model Size

でかい方が良い。in-domainならBaseでもそれなりの性能だけど、結局LARGEの方が強い。

image



Datasets

異なるデータセットでもtransferがうまく機能している。驚いたことにデータセットをmixingするとあまりうまくいかず、単体のデータセットで訓練したほうが性能が良い。

image



LongT5を見ると、T5よりもCorrelationが低く難易度が高い。

image



最終的に英語の要約を評価をする場合でも、Multilingual(別言語)で訓練しても高いCorrelationを示すこともわかった。

image



Dataset Size

サンプル数が小さくても有効に働く。しかし、out-domainのデータの場合は、たとえば、512件の場合は性能が低く少しexampleを増やさなければならない。

image



#Pocket #NLP #Evaluation #LLM-as-a-Judge Issue Date: 2023-08-13 GPTScore: Evaluate as You Desire, Jinlan Fu+, N_A, arXiv'23 Summary本研究では、生成型AIの評価における課題を解決するために、GPTScoreという評価フレームワークを提案しています。GPTScoreは、生成されたテキストを評価するために、生成型事前学習モデルの新たな能力を活用しています。19の事前学習モデルを探索し、4つのテキスト生成タスクと22の評価項目に対して実験を行いました。結果は、GPTScoreが自然言語の指示だけでテキストの評価を効果的に実現できることを示しています。この評価フレームワークは、注釈付きサンプルの必要性をなくし、カスタマイズされた多面的な評価を実現することができます。 CommentBERTScoreと同様、評価したいテキストの対数尤度で評価している
BERTScoreよりも相関が高く、instructionによって性能が向上することが示されている
#Pocket #NLP #Evaluation Issue Date: 2023-08-13 Large Language Models are Diverse Role-Players for Summarization Evaluation, Ning Wu+, N_A, arXiv'23 Summary本研究では、テキスト要約の評価フレームワークを提案し、生成されたテキストと参照テキストを客観的および主観的な側面から比較することで包括的な評価を行います。具体的には、ロールプレイヤーのプロンプティングメカニズムを使用してテキストの評価をモデル化し、コンテキストベースのプロンプティングメカニズムを導入して動的なロールプレイヤープロファイルを生成します。さらに、バッチプロンプティングに基づいたマルチロールプレイヤープロンプティング技術を使用して複数の評価結果を統合します。実験結果は、提案モデルが競争力があり、人間の評価者と高い一致性を持つことを示しています。 #Pocket #NLP #Evaluation #Factuality Issue Date: 2023-08-13 ChatGPT as a Factual Inconsistency Evaluator for Text Summarization, Zheheng Luo+, N_A, arXiv'23 Summary事前学習された言語モデルによるテキスト要約の性能向上が注目されているが、生成された要約が元の文書と矛盾することが問題となっている。この問題を解決するために、効果的な事実性評価メトリクスの開発が進められているが、計算複雑性や不確実性の制約があり、人間の判断との一致に限定されている。最近の研究では、大規模言語モデル(LLMs)がテキスト生成と言語理解の両方で優れた性能を示していることがわかっている。本研究では、ChatGPTの事実的な矛盾評価能力を評価し、バイナリエンテイルメント推論、要約ランキング、一貫性評価などのタスクで優れた性能を示した。ただし、ChatGPTには語彙的な類似性の傾向や誤った推論、指示の不適切な理解などの制限があることがわかった。 #Metrics #NLP #Dataset #Evaluation Issue Date: 2023-07-18 Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation, ACL'23 Summary要約の評価には人間の評価が重要ですが、既存の評価方法には問題があります。そこで、私たちは新しい要約の重要性プロトコルを提案し、大規模な人間評価データセットを収集しました。さらに、異なる評価プロトコルを比較し、自動評価指標を評価しました。私たちの研究結果は、大規模言語モデルの評価に重要な示唆を与えます。 #NaturalLanguageGeneration #NLP #Abstractive #Factuality Issue Date: 2023-07-18 Improving Factuality of Abstractive Summarization without Sacrificing Summary Quality, ACL'23 Summary事実性を意識した要約の品質向上に関する研究はあるが、品質を犠牲にすることなく事実性を向上させる手法がほとんどない。本研究では「Effective Factual Summarization」という技術を提案し、事実性と類似性の指標の両方で大幅な改善を示すことを示した。トレーニング中に競合を防ぐために2つの指標を組み合わせるランキング戦略を提案し、XSUMのFactCCでは最大6ポイント、CNN/DMでは11ポイントの改善が見られた。また、類似性や要約の抽象性には負の影響を与えない。 #NaturalLanguageGeneration #NLP #Abstractive #Extractive Issue Date: 2023-07-18 Abstractive Summarizers are Excellent Extractive Summarizers, ACL'23 Summary本研究では、抽出型要約と要約型要約の相乗効果を探求し、シーケンス・トゥ・シーケンス・アーキテクチャを使用した3つの新しい推論アルゴリズムを提案しています。これにより、要約型システムが抽出型システムを超えることができることを示しました。また、要約型システムは抽出型のオラクル要約にさらされることなく、両方の要約を単一のモデルで生成できることも示しました。これは、抽出型ラベルの必要性に疑問を投げかけるものであり、ハイブリッドモデルの有望な研究方向を示しています。 #NaturalLanguageGeneration #NLP #Extractive #Faithfulness Issue Date: 2023-07-18 Extractive is not Faithful: An Investigation of Broad Unfaithfulness Problems in Extractive Summarization, ACL'23 Summary本研究では、抽出的な要約の不正確さの問題について議論し、それを5つのタイプに分類します。さらに、新しい尺度であるExtEvalを提案し、不正確な要約を検出するために使用することを示します。この研究は、抽出的な要約の不正確さに対する認識を高め、将来の研究に役立つことを目指しています。 CommentExtractive SummarizatinoのFaithfulnessに関する研究。

>抽出的な要約は抽象的な要約の一般的な不正確さの問題にはあまり影響を受けにくいですが、それは抽出的な要約が正確であることを意味するのでしょうか?結論はノーです。

>本研究では、抽出的な要約に現れる広範な不正確さの問題(非含意を含む)を5つのタイプに分類

>不正確な共参照、不完全な共参照、不正確な談話、不完全な談話、および他の誤解を招く情報が含まれます。

>私たちは、16の異なる抽出システムによって生成された1600の英語の要約を人間にラベル付けするように依頼しました。その結果、要約の30%には少なくとも5つの問題のうちの1つが存在することがわかりました。



おもしろい。
#NaturalLanguageGeneration #NLP #Dataset #Conversation Issue Date: 2023-07-15 MeetingBank: A Benchmark Dataset for Meeting Summarization, ACL'23 Summary会議の要約技術の開発には注釈付きの会議コーパスが必要ですが、その欠如が問題となっています。本研究では、新しいベンチマークデータセットであるMeetingBankを提案しました。MeetingBankは、会議議事録を短いパッセージに分割し、特定のセグメントと対応させることで、会議の要約プロセスを管理しやすいタスクに分割することができます。このデータセットは、会議要約システムのテストベッドとして利用できるだけでなく、一般の人々が議会の意思決定の仕組みを理解するのにも役立ちます。ビデオリンク、トランスクリプト、参照要約などのデータを一般に公開し、会議要約技術の開発を促進します。 #NaturalLanguageGeneration #Controllable #NLP #Dataset #Factuality Issue Date: 2023-07-15 On Improving Summarization Factual Consistency from Natural Language Feedback, ACL'23 Summary本研究では、自然言語の情報フィードバックを活用して要約の品質とユーザーの好みを向上させる方法を調査しました。DeFactoという高品質なデータセットを使用して、要約の編集や修正に関する自然言語生成タスクを研究しました。また、微調整された言語モデルを使用して要約の品質を向上させることも示しました。しかし、大規模な言語モデルは制御可能なテキスト生成には向いていないことがわかりました。 #Survey #NLP #Abstractive #Conversation Issue Date: 2023-07-15 [TACL] Abstractive Meeting Summarization: A Survey, TACL'23 Summary会議の要約化において、深層学習の進歩により抽象的要約が改善された。本論文では、抽象的な会議の要約化の課題と、使用されているデータセット、モデル、評価指標について概説する。 #NLP #Abstractive #pretrained-LM #InstructionTuning Issue Date: 2023-07-13 Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization, ACL'23 Summaryこの論文では、新しい事前学習言語モデルであるZ-Code++を提案し、抽象的なテキスト要約に最適化されています。Z-Code++は、2つのフェーズの事前学習とディセントラル化アテンション層、およびエンコーダー内のフュージョンを使用しています。このモデルは、低リソースの要約タスクで最先端の性能を発揮し、パラメータ効率的であり、他の競合モデルを大幅に上回ります。 #NeuralNetwork #NLP #Abstractive #EACL Issue Date: 2022-09-02 Long Document Summarization with Top-down and Bottom-up Inference, Pang+, Salesforce Research, EACL'23 Comment日本語解説: https://zenn.dev/ty_nlp/articles/9f5e5dd3084dbd



以下、上記日本語解説記事を読んで理解した内容をまとめます。ありがとうございます。



概要

基本的にTransformerベースのモデル(e.g. BERTSum, BART, PEGASUS, GPT-2, T5)ではself-attentionの計算量が入力トークン数Nに対してO(N^2)でかかり、入力の二乗のオーダーで計算量が増えてしまう。

これを解消するためにself-attentionを計算する範囲をウィンドウサイズで制限するLongformerや、BigBardなどが提案されてきたが、どちらのモデルも離れたトークン間のattentionの情報が欠落するため、長距離のトークン間の関係性を捉えにくくなってしまう問題があった。



image



そこで、top-down transformerではセグメント(セグメントはテキストでいうところの文)という概念を提唱し、tokenからsegmentのrepresentationを生成しその後self-attentionでsegment間の関係性を考慮してsegmentのrepresentationを生成するbottom-up inference、各tokenとsegmentの関係性を考慮しし各tokenのrepresentationを学習するtop-down inferenceの2つの構造を利用した。bottom-up inferenceにおいてsegmentのrepresentationを計算する際にpoolingを実施するが、adapoolingと呼ばれる重要なトークンに重み付けをし、その重みを加味した加重平均によりプーリングを実施する。これにより、得られた各トークンの表現は、各セグメントとの関連度の情報を含み(セグメントの表現は各セグメント間のattentnionに基づいて計算されているため; bottom-up inference)、かつ各トークンと各セグメント間との関連度も考慮して計算されているため(top-down inference)、結果的に離れたトークン間の関連度を考慮したrepresentationが学習される(下図)。



image

(図は上記記事からお借りいたしました)



各attentionの計算量は表のようになり、M, wはNよりも遥かに小さいため、O(N^2)よりも遥かに小さい計算量で計算できる。

image

(こちらも上記記事からお借りいたしました)



実験(日本語解説より)

データセット

image



結果

PubMedとarXiv

image



CNN-DailyMail

image



TVMegasSiteとForeverDreaming

image



BookSum-Chapter-Level

image



BookSum-Book-Level

image



所感

CNN-DailyMailのようなinput wordsが900程度のデータではcomparableな結果となっているが、input wordsが長い場合は先行研究をoutperformしている。BookSum-Chapter Levelにおいて、Longformer, BigBirdの性能が悪く、BART, T5, Pegasusの性能が良いのが謎い。

てかinput wordsが3000~7000程度のデータに対して、どうやってBARTやらT5やらを実装できるんだろう。大抵512 tokenくらいが限界だと思っていたのだが、どうやったんだ・・・。>The maximum document lengths for PubMed, arXiv, CNN-DM,

TVMegaSite, ForeverDreaming, BookSum are 8192, 16384, 1024, 12288, 12288, 12288, respectively



これは、たとえばBookSumの場合は仮にinputの長さが11万とかあったとしても、12288でtruncateしたということだろうか。まあなんにせよ、頑張ればこのくらいの系列長のモデルを学習できるということか(メモリに乗るのか・・・?どんな化け物マシンを使っているのか)。>We first train a top-down transformer on the chapter-level data and then fine-tune it on the book-level

data. The inputs to the book-level model are (1) the concatenated chapter reference summaries in

training or (2) the concatenated chapter summaries generated by the chapter-level model in testing.

The chapter-to-book curriculum training is to mitigate the scarcity of book-level data. The recursive

summarization of chapters and then books can be considered abstractive content selection applied

to book data, and is used to address the extremely long length of books.



BookLevel Summarizationでは、データ数が300件程度しかなく、かつinput wordsがでかすぎる。これに対処するために、まずtop-down transformerをchapter-level_ dataで訓練して、その後book-level dataでfine-tuning。book-level dataでfine-tuningする際には、chapterごとのreference summaryをconcatしたものを正解とし、chapter-level modelが生成したchapterごとのsummaryをconcatしたものをモデルが生成した要約として扱った、という感じだろうか。まずchapter levelで学習しその後book levelで学習するcurriculum learningっぽいやり方がbook-level dataの不足を緩和してくれる。bookの要約を得るためにchapterを再帰的に要約するようなアプローチは、book dataに対するcontent selectionとしてみなすことができ、おそろしいほど長い入力の対処にもなっている、という感じだろうか。
#BeamSearch #NaturalLanguageGeneration #Pocket #NLP #ACL Issue Date: 2023-08-16 BRIO: Bringing Order to Abstractive Summarization, Yixin Liu+, N_A, ACL'22 Summary従来の抽象的要約モデルでは、最尤推定を使用して訓練されていましたが、この方法では複数の候補要約を比較する際に性能が低下する可能性があります。そこで、非確定論的な分布を仮定し、候補要約の品質に応じて確率を割り当てる新しい訓練パラダイムを提案しました。この手法により、CNN/DailyMailとXSumのデータセットで最高の結果を達成しました。さらに、モデルが候補要約の品質とより相関のある確率を推定できることも示されました。 Commentビーム内のトップがROUGEを最大化しているとは限らなかったため、ROUGEが最大となるような要約を選択するようにしたら性能爆上げしましたという研究。
実質現在のSoTA
#NaturalLanguageGeneration #Metrics #Pocket #NLP #Evaluation #Reference-based Issue Date: 2023-08-14 SMART: Sentences as Basic Units for Text Evaluation, Reinald Kim Amplayo+, N_A, arXiv'22 Summary本研究では、テキスト生成の評価指標の制限を緩和するために、新しい指標であるSMARTを提案する。SMARTは文を基本的なマッチング単位とし、文のマッチング関数を使用して候補文と参照文を評価する。また、ソースドキュメントの文とも比較し、評価を可能にする。実験結果は、SMARTが他の指標を上回ることを示し、特にモデルベースのマッチング関数を使用した場合に有効であることを示している。また、提案された指標は長い要約文でもうまく機能し、特定のモデルに偏りが少ないことも示されている。 #Metrics #Pocket #NLP #Evaluation #Reference-free #Reference-based Issue Date: 2023-08-13 FFCI: A Framework for Interpretable Automatic Evaluation of Summarization, Fajri Koto+, N_A, JAIR'22 Summary本論文では、FFCIという細かい要約評価のためのフレームワークを提案しました。このフレームワークは、信頼性、焦点、カバレッジ、および文間の連続性の4つの要素から構成されています。新しいデータセットを構築し、評価メトリックとモデルベースの評価方法をクロス比較することで、FFCIの4つの次元を評価するための自動的な方法を開発しました。さまざまな要約モデルを評価し、驚くべき結果を得ました。 Comment先行研究でどのようなMetricが利用されていて、それらがどういった観点のMetricなのかや、データセットなど、非常に細かくまとまっている。Faithfulness(ROUGE, STS-Score, BERTScoreに基づく), Focus and Coverage (Question Answering basedな手法に基づく), Inter-Sentential Coherence (NSPに基づく)メトリックを組み合わせることを提案している。 #NaturalLanguageGeneration #Metrics #Pocket #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation, Pierre Colombo+, N_A, AAAI'22 Summary自然言語生成システムの品質評価は高価であり、人間の注釈に頼ることが一般的です。しかし、自動評価指標を使用することもあります。本研究では、マスクされた言語モデルを使用した評価指標であるInfoLMを紹介します。この指標は同義語を処理することができ、要約やデータ生成の設定で有意な改善を示しました。 #NaturalLanguageGeneration #Metrics #Pocket #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 WIDAR -- Weighted Input Document Augmented ROUGE, Raghav Jain+, N_A, ECIR'22 Summary自動テキスト要約の評価において、ROUGEメトリックには制約があり、参照要約の利用可能性に依存している。そこで、本研究ではWIDARメトリックを提案し、参照要約だけでなく入力ドキュメントも使用して要約の品質を評価する。WIDARメトリックは一貫性、整合性、流暢さ、関連性の向上をROUGEと比較しており、他の最先端のメトリックと同等の結果を短い計算時間で得ることができる。 #NLP #Evaluation #LM-based #Factuality Issue Date: 2023-08-13 SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization, Laban+, TACL'22 Summary要約の領域では、入力ドキュメントと要約が整合していることが重要です。以前の研究では、自然言語推論(NLI)モデルを不整合検出に適用するとパフォーマンスが低下することがわかりました。本研究では、NLIを不整合検出に再評価し、過去の研究での入力の粒度の不一致が問題であることを発見しました。新しい手法SummaCConvを提案し、NLIモデルを文単位にドキュメントを分割してスコアを集計することで、不整合検出に成功裏に使用できることを示しました。さらに、新しいベンチマークSummaCを導入し、74.4%の正確さを達成し、先行研究と比較して5%の改善を実現しました。 #Metrics #NLP #Evaluation #Factuality Issue Date: 2023-08-13 TRUE: Re-evaluating Factual Consistency Evaluation, Or Honovich+, N_A, the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering'22 Summary事実の整合性メトリックの包括的な調査と評価であるTRUEを紹介。さまざまな最先端のメトリックと11のデータセットを対象に行った結果、大規模なNLIおよび質問生成・回答ベースのアプローチが強力で補完的な結果を達成することがわかった。TRUEをモデルおよびメトリックの開発者の出発点として推奨し、さらなる評価方法の向上に向けた進歩を期待している。 CommentFactualConsistencyに関するMetricが良くまとまっている #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 MaskEval: Weighted MLM-Based Evaluation for Text Summarization and Simplification, Yu Lu Liu+, N_A, arXiv'22 Summary本研究では、テキストの要約と簡素化のための参照のない評価尺度であるMaskEvalを提案しています。MaskEvalは、候補テキストとソーステキストの連結に対してマスクされた言語モデリングを行い、重要な品質の側面ごとに相対的な重要性を調整することができます。さらに、英語の要約と簡素化における人間の判断との相関に基づいて、その効果を示し、両方のタスク間での転移シナリオを探索します。 #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 Play the Shannon Game With Language Models: A Human-Free Approach to Summary Evaluation, Nicholas Egan+, N_A, AAAI'22 Summaryこの研究では、事前学習済み言語モデルを使用して、参照フリーの要約評価指標を提案します。これにより、要約の品質を測定するための新しい手法が開発されます。また、提案手法が人間の判断と高い相関関係を持つことが実証されます。 #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 Reference-free Summarization Evaluation via Semantic Correlation and Compression Ratio, Liu+, NAACL'22 Summary本研究では、参照ベースの評価方法の柔軟性の欠如を解消するために、事前学習済み言語モデルを使用して自動参照フリーの評価指標を提案します。この指標は、要約の意味的な分布と圧縮率を考慮し、人間の評価とより一致していることが実験で示されました。 #NLP #Evaluation Issue Date: 2023-08-13 Re-Examining System-Level Correlations of Automatic Summarization Evaluation Metrics, Deutsch+, NAACL'22 Summary本研究では、自動要約評価尺度のシステムレベルの相関に関する不整合を修正するための変更を提案しています。具体的には、全テストセットを使用して自動評価尺度のシステムスコアを計算し、実際のシナリオでよく見られる自動スコアのわずかな差によって分離されたシステムのペアに対してのみ相関を計算することを提案しています。これにより、より正確な相関推定と高品質な人間の判断の収集が可能となります。 #NLP #Evaluation Issue Date: 2023-08-13 Does Summary Evaluation Survive Translation to Other Languages?, Braun+, NAACL'22 Summary要約データセットの作成は費用と時間がかかるが、機械翻訳を使用して既存のデータセットを他の言語に翻訳することで、追加の言語での使用が可能になる。この研究では、英語の要約データセットを7つの言語に翻訳し、自動評価尺度によるパフォーマンスを比較する。また、人間と自動化された要約のスコアリング間の相関を評価し、翻訳がパフォーマンスに与える影響も考慮する。さらに、データセットの再利用の可能性を見つけるために、特定の側面に焦点を当てる。 #Metrics #NLP #Evaluation #TrainedMetrics Issue Date: 2023-08-13 SummScore: A Comprehensive Evaluation Metric for Summary Quality Based on Cross-Encoder, Wuhang Lin+, N_A, arXiv'22 Summary要約の品質評価メトリクスの問題を解決するために、SummScoreという包括的な評価メトリクスを提案する。SummScoreはCrossEncoderに基づいており、要約の多様性を抑制せずに要約の品質を評価することができる。さらに、SummScoreは一貫性、一貫性、流暢さ、関連性の4つの側面で評価することができる。実験結果は、SummScoreが既存の評価メトリクスを上回ることを示している。また、SummScoreの評価結果を16の主要な要約モデルに提供している。 #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 SueNes: A Weakly Supervised Approach to Evaluating Single-Document Summarization via Negative Sampling, Bao+, NAACL'22 Summary従来の自動要約評価メトリックは語彙の類似性に焦点を当てており、意味や言語的な品質を十分に捉えることができない。参照要約が必要であるためコストがかかる。本研究では、参照要約が存在しない弱教師あり要約評価手法を提案する。既存の要約データセットを文書と破損した参照要約のペアに変換してトレーニングする。ドメイン間のテストでは、提案手法がベースラインを上回り、言語的な品質を評価する上で大きな利点を示した。 #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 PrefScore: Pairwise Preference Learning for Reference-free Summarization Quality Assessment, Luo+, COLING'22 Summary人間による参照要約のない機械生成の要約の評価を行うために、ブラッドリー・テリーのパワーランキングモデルを使用して要約の優劣を判断する方法を提案する。実験結果は、この方法が人間の評価と高い相関を持つスコアを生成できることを示している。 #Pocket #NLP #Evaluation Issue Date: 2023-08-13 How to Find Strong Summary Coherence Measures? A Toolbox and a Comparative Study for Summary Coherence Measure Evaluation, Steen+, COLING'22 Summary要約の一貫性を自動的に評価することは重要であり、さまざまな方法が提案されていますが、異なるデータセットと評価指標を使用して評価されるため、相対的なパフォーマンスを理解することが困難です。本研究では、要約の一貫性モデリングのさまざまな方法について調査し、新しい分析尺度を導入します。現在の自動一貫性尺度はすべての評価指標において信頼性のある一貫性スコアを割り当てることができませんが、大規模言語モデルは有望な結果を示しています。 #NeuralNetwork #Analysis #Pocket #NLP #IJCNLP #AACL #Repetition Issue Date: 2023-08-13 Self-Repetition in Abstractive Neural Summarizers, Nikita Salkar+, N_A, AACL-IJCNLP'22 Summary私たちは、BART、T5、およびPegasusという3つのニューラルモデルの出力における自己繰り返しの分析を行いました。これらのモデルは、異なるデータセットでfine-tuningされています。回帰分析によると、これらのモデルは入力の出力要約間でコンテンツを繰り返す傾向が異なることがわかりました。また、抽象的なデータや定型的な言語を特徴とするデータでのfine-tuningでは、自己繰り返しの割合が高くなる傾向があります。定性的な分析では、システムがアーティファクトや定型フレーズを生成することがわかりました。これらの結果は、サマライザーのトレーニングデータを最適化するための手法の開発に役立つ可能性があります。 #Pocket #NLP #Evaluation Issue Date: 2023-08-13 Universal Evasion Attacks on Summarization Scoring, Wenchuan Mu+, N_A, BlackboxNLP workshop on ACL'22 Summary要約の自動評価は重要であり、その評価は複雑です。しかし、これまで要約の評価は機械学習のタスクとは考えられていませんでした。本研究では、自動評価の堅牢性を探るために回避攻撃を行いました。攻撃システムは、要約ではない文字列を予測し、一般的な評価指標であるROUGEやMETEORにおいて優れた要約器と競合するスコアを達成しました。また、攻撃システムは最先端の要約手法を上回るスコアを獲得しました。この研究は、現在の評価システムの堅牢性の低さを示しており、要約スコアの開発を促進することを目指しています。 #Pocket #NLP #Evaluation Issue Date: 2023-08-13 DocAsRef: A Pilot Empirical Study on Repurposing Reference-Based Summary Quality Metrics Reference-Freely, Forrest Sheng Bao+, N_A, arXiv'22 Summary参照ベースと参照フリーの要約評価メトリックがあります。参照ベースは正確ですが、制約があります。参照フリーは独立していますが、ゼロショットと正確さの両方を満たせません。本研究では、参照ベースのメトリックを使用してゼロショットかつ正確な参照フリーのアプローチを提案します。実験結果は、このアプローチが最も優れた参照フリーのメトリックを提供できることを示しています。また、参照ベースのメトリックの再利用と追加の調整についても調査しています。 #Metrics #Tools #NLP #Dataset #Evaluation #Admin'sPick Issue Date: 2023-08-13 SummEval: Re-evaluating Summarization Evaluation, Fabbri+, TACL'21 Comment自動評価指標が人手評価の水準に達しないことが示されており、結局のところROUGEを上回る自動性能指標はほとんどなかった。human judgmentsとのKendall;'s Tauを見ると、chrFがCoherenceとRelevance, METEORがFluencyで上回ったのみだった。また、LEAD-3はやはりベースラインとしてかなり強く、LEAD-3を上回ったのはBARTとPEGASUSだった。 #NLP #Evaluation Issue Date: 2023-08-13 How to Evaluate a Summarizer: Study Design and Statistical Analysis for Manual Linguistic Quality Evaluation, Steen+, EACL'21 Summary要約システムの評価方法についての調査結果を報告しました。要約の言語的品質についての評価実験を行い、最適な評価方法は側面によって異なることを示しました。また、研究パラメータや統計分析方法についても問題点を指摘しました。さらに、現行の方法では固定された研究予算の下では信頼性のある注釈を提供できないことを強調しました。 Comment要約の人手評価に対する研究 #NLP #Evaluation Issue Date: 2023-08-13 Reliability of Human Evaluation for Text Summarization: Lessons Learned and Challenges Ahead, Iskender+, EACL'21 Summary人間評価の信頼性に関する研究では、参加者の情報や実験の詳細が提供されていないことが多い。また、人間評価の信頼性に影響を与える要因についても研究されていない。そこで、私たちは人間評価実験を行い、参加者の情報や実験の詳細を提供し、異なる実験結果を比較した。さらに、専門家と非専門家の評価の信頼性を確保するためのガイドラインを提供し、信頼性に影響を与える要因を特定した。 Comment要約の人手評価に対する信頼性に関して研究。人手評価のガイドラインを提供している。 #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 The Feasibility of Embedding Based Automatic Evaluation for Single Document Summarization, EMNLP-IJCNLP'21, Sun+ Comment__translate: ROUGE is widely used to automatically evaluate summarization systems. However, ROUGE measures semantic overlap between a system summary and a human reference on word-string level, much at odds with the contemporary treatment of semantic meaning. Here we present a suite of experiments on using distributed representations for evaluating summarizers, both in reference-based and in reference-free setting. Our experimental results show that the max value over each dimension of the summary ELMo word embeddings is a good representation that results in high correlation with human ratings. Averaging the cosine similarity of all encoders we tested yields high correlation with manual scores in reference-free setting. The distributed representations outperform ROUGE in recent corpora for abstractive news summarization but are less good on test data used in past evaluations.C-ELMO/C-SBERT #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 A Training-free and Reference-free Summarization Evaluation Metric via Centrality-weighted Relevance and Self-referenced Redundancy, Chen+, ACL-IJCNLP'21 Summary参照ベースと教師ありの要約評価指標の制約を回避するために、トレーニングフリーかつ参照フリーの要約評価指標を提案する。この指標は、文の中心性によって重み付けされた概念参照と要約との関連性スコアと、自己参照の冗長性スコアから構成される。関連性スコアは擬似参照と要約との間で計算され、重要度のガイダンスを提供する。要約の冗長性スコアは要約内の冗長な情報を評価するために計算される。関連性スコアと冗長性スコアを組み合わせて、要約の最終評価スコアを生成する。徹底的な実験により、提案手法が既存の手法を大幅に上回ることが示された。ソースコードはGitHubで公開されている。 #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Reference-free #QA-based Issue Date: 2023-08-13 QuestEval: Summarization Asks for Fact-based Evaluation, Thomas Scialom+, N_A, EMNLP'21 Summary要約の評価は未解決の課題であり、既存の評価指標は限定的であり、人間の判断との相関が低い。そこで、本研究では質問応答モデルを利用した評価指標QuestEvalを提案する。QuestEvalは正解の参照を必要とせず、一貫性、結束性、流暢さ、関連性の4つの評価次元において人間の判断との相関を大幅に改善することが実験により示された。 CommentQuestEval概要

984 によって提案されてきたメトリックがROUGEに勝てていないことについて言及し、より良い指標を提案。

・precision / recall-based な QA metricsを利用してよりロバスト

・生成されるqueryのsaliencyを学習する手法を提案することで、information selectionの概念を導入した

・CNN/Daily Mail, XSUMで評価した結果、SoTAな結果を獲得し、特にFactual Consistencyの評価に有用なことを示した



Question-based framework

prerainedなT5を利用しQAに回答するcomponent(question, Textがgivenな時answerを生成するモデル)を構築する。text Tに対するquery qに対してrと回答する確率をQ\_A\(r|T, q)とし、Q\_A\(T, q)をモデルによってgreedyに生成された回答とする。Questionが与えられた時、Summary内に回答が含まれているかは分からない。そのため、unanswerable token εもQA componentに含める。

QG componentとしては、answer-source documentが与えられたときに人間が生成したquestionを生成できるようfinetuningされたT5モデルを利用する。テスト時は、ソースドキュメントと、システム要約がgivenなときに、はじめにQG modelを条件付けするためのanswerのsetを選択する。1007 にならい、ソースドキュメントの全ての固有名詞と名詞をanswerとみなす。そして、それぞれの選択されたanswerごとに、beam searchを用いてquestionを生成する。そして、QAモデルが誤った回答をした場合、そのようなquestionはフィルタリングする。text Tにおいて、Q_A(T, q) = rとなるquestion-answer pairs (q, r)の集合を、Q_G(T)と表記する。



QuestEval metric

Precision

source documentをD, システム要約をSとしたときに、Precision, Recallを以下の式で測る:

image

question生成時は要約から生成し、生成されたquestionに回答する際はsource documentを利用し、回答の正誤に対してF1スコアを測定する。F1スコアは、ground truthと予測された回答を比較することによって測定され、回答がexact matchした場合に1, common tokenが存在しない場合に0を返す。D, Sで条件付けされたときに、回答が変わってしまう場合は要約がinconsistentだとみなせる、というintuitionからきている。

Recall

要約はfactual informationを含むべきのみならず(precision)、ソーステキストの重要な情報を含むべきである(recall)。943をquery weighter Wを導入することで拡張し、recallを下記で定義する:

image

ここで、Q_G(D)は、ソーステキストDにおけるすべてのQA pairの集合、W(q, D)はDに対するqの重みである。



Answerability and F1

Factoid QAモデルは一般的に、predicted answerとground truthのoverlapによって(F1)評価されている。しかし"ACL"と"Association for Computational Linguistics"のように、同じ回答でも異なる方法で表現される可能性がある。この例では、F1スコアは0となる(共通のtokenがないため)。

これを回避するために、943 と同様に1-Q_A(ε)を利用する。

image



QG component, QA componentで利用するT5は、それぞれ[SQuAD-v2](https://huggingface.co/datasets/squad_v2)と、NewsQAデータセット 1142 によってfinetuningしたものを利用する。
#Metrics #NLP #Evaluation #LM-based #Factuality Issue Date: 2023-08-13 Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation, Deng+, EMNLP''21 Summary本研究では、自然言語生成(NLG)タスクの評価において、情報の整合性を重視した統一的な視点を提案する。情報の整合性を評価するための解釈可能な評価指標のファミリーを開発し、ゴールドリファレンスデータを必要とせずに、さまざまなNLGタスクの評価を行うことができることを実験で示した。 CommentCTC #Metrics #NLP #Evaluation #Reference-free #LM-based #Admin'sPick Issue Date: 2023-08-13 BARTSCORE: Evaluating Generated Text as Text Generation, Yuan+ (w_ Neubig氏), NeurIPS'21 Summary本研究では、生成されたテキストの評価方法について検討しました。具体的には、事前学習モデルを使用してテキスト生成の問題をモデル化し、生成されたテキストを参照出力またはソーステキストに変換するために訓練されたモデルを使用しました。提案したメトリックであるBARTSCOREは、情報量、流暢さ、事実性などの異なる視点のテキスト評価に柔軟に適用できます。実験結果では、既存のトップスコアリングメトリックを上回る性能を示しました。BARTScoreの計算に使用するコードは公開されており、インタラクティブなリーダーボードも利用可能です。 CommentBARTScore概要

ソーステキストが与えられた時に、BARTによって生成テキストを生成する尤度を計算し、それをスコアとする手法。テキスト生成タスクをテキスト生成モデルでスコアリングすることで、pre-trainingされたパラメータをより有効に活用できる(e.g. BERTScoreやMoverScoreなどは、pre-trainingタスクがテキスト生成ではない)。BARTScoreの特徴は

1. parameter・and data-efficientである。pre-trainingに利用されたパラメータ以外の追加パラメータは必要なく、unsupervisedなmetricなので、human judgmentのデータなども必要ない。

2. 様々な観点から生成テキストを評価できる。conditional text generation problemにすることでinformativeness, coherence, factualityなどの様々な観点に対応可能。

3. BARTScoreは、(i) pre-training taskと類似したpromptを与えること、(ii) down stream generation taskでfinetuningすること、でより高い性能を獲得できる

BARTScoreを16種類のデータセットの、7つの観点で評価したところ、16/22において、top-scoring metricsよりも高い性能を示した。また、prompting starategyの有効性を示した。たとえば、シンプルに"such as"というフレーズを翻訳テキストに追加するだけで、German-English MTにおいて3%の性能向上が見られた。また、BARTScoreは、high-qualityなテキスト生成システムを扱う際に、よりロバストであることが分析の結果分かった。



前提

Problem Formulation

生成されたテキストのqualityを測ることを目的とする。本研究では、conditional text generation (e.g. 機械翻訳)にフォーカスする。すなわち、ゴールは、hypothesis h_bar を source text s_barがgivenな状態で生成することである。一般的には、人間が作成したreference r_barが評価の際は利用される。

Gold-standard Human Evaluation

評価のgold standardは人手評価であり、人手評価では多くの観点から評価が行われる。以下に代表的な観点を示す:

1. Informativeness: ソーステキストのキーアイデアをどれだけ捉えているか

2. Relevance: ソーステキストにあ地して、どれだけconsistentか

3. Fluency formatting problem, capitarlization errorや非文など、どの程度読むのが困難か

4. Coherence: 文間のつながりが、トピックに対してどれだけcoherentか

5. Factuality: ソーステキストに含意されるstatementのみを生成できているか

6. Semantic Coverage: 参照テキスト中のSemantic Content Unitを生成テキストがどれだけカバーできているか

7: Adequacy 入力文に対してアウトプットが同じ意味を出力できているかどうか、あるいは何らかのメッセージが失われる、追加される、歪曲していないかどうか



多くの性能指標は、これらの観点のうちのsubsetをカバーするようにデザインんされている。たとえば、BLEUは、翻訳におけるAdequacyとFluencyをとらえることを目的としている。一方、ROUGEは、semantic coverageを測るためのメトリックである。

BARTScoreは、これらのうち多くの観点を評価することができる。



Evaluation as Different Tasks

ニューラルモデルを異なる方法で自動評価に活用するのが最近のトレンドである。下図がその分類。この分類は、タスクにフォーカスした分類となっている。

1. Unsupervised Matching: ROUGE, BLEU, CHRF, BERTScore, MoverScoreのように、hypothesisとreference間での意味的な等価性を測ることが目的である。このために、token-levelのマッチングを用いる。これは、distributedな表現を用いる(BERTScore, MoverScore)場合もあれば、discreteな表現を用いる(ROUGE, BLEU, chrF)場合もある。また、意味的な等価性だけでなく、factual consistencyや、source-hypothesis間の関係性の評価に用いることもできると考えられるが先行研究ではやられていなかったので、本研究で可能なことを示す。

2. Supervised Regression: BLEURT, COMET, S^3, VRMのように、regression layer を用いてhuman judgmentをsupervisedに予測する方法である。最近のメトリックtおしては、BLEURT, COMETがあげられ、古典的なものとしては、S^3, VRMがあげられる。

4. Supervised Ranking: COMET, BEERのような、ランキング問題としてとらえる方法もある。これは優れたhypothesisを上位にランキングするようなスコア関数を学習する問題に帰着する。COMETやBEERが例としてあげられ、両者はMTタスクにフォーカスされている。COMETはhunan judgmentsをregressionすることを通じてランキングを作成し、BEERは、多くのシンプルな特徴量を組み合わせて、linear layerでチューニングされる。

5. Text Generation: PRISM, BARTScoreが例として挙げられる。BARTScoreでは、生成されたテキストの評価をpre-trained language modelによるテキスト生成タスクとしてとらえる。基本的なアイデアとしては、高品質のhypothesisは、ソース、あるいはreferenceから容易に生成可能であろう、というものである。これはPRISMを除いて、先行研究ではカバーされていない。BARTScoreは、PRISMとはいくつかの点で異なっている。(i) PRISMは評価をparaphrasing taskとしてとらえており、これが2つの意味が同じテキストを比較する前提となってしまっているため、手法を適用可能な範囲を狭めてしまっている。たとえば、文書要約におけるfactual consistencyの評価では、semantic spaceが異なる2つのテキストを比較する必要があるが、このような例には対応できない。(ii) PRISMはparallel dataから学習しなけえrばならないが、BARTScoreは、pre-trainedなopen-sourceのseq2seq modelを利用できる。(iii) BARTScoreでは、PRISMが検証していない、prompt-basedのlearningもサポートしている。

image



BARTScore

Sequence-to-Sequence Pre-trained Models

pre-trainingされたモデルは、様々な軸で異なっているが、その一つの軸としては訓練時の目的関数である。基本的には2つの大きな変種があり、1つは、language modeling objectives (e.g. MLM)、2つ目は、seq2seq objectivesである。特に、seq2seqで事前学習されたモデルは、エンコーダーとデコーダーによって構成されているため特に条件付き生成タスクに対して適しており、予測はAutoRegressiveに行われる。本研究ではBARTを用いる。付録には、preliminary experimentsとして、BART with T5, PEGASUSを用いた結果も添付する。

BARTScore

最も一般的なBARTScoreの定式化は下記である。

image

weighted log probabilityを利用する。このweightsは、異なるトークンに対して、異なる重みを与えることができる。たておば、IDFなどが利用可能であるが、本研究ではすべてのトークンを等価に扱う(uniform weightingだがstopwordを除外、IDFによる重みづけ、事前分布を導入するなど色々試したが、uniform weightingを上回るものがなかった)。



BARTScoreを用いて、様々な方向に用いて生成を行うことができ、異なる評価のシナリオに対応することができる。

・Faithfulness (s -> h):

・hypothesisがどれだけsource textに基づいて生成されているかを測ることができる。シナリオとしては、FactualityやRelevanceなどが考えられる。また、CoherenceやFluencyのように、target textのみの品質を測るためにも用いることができる。

・Precision (r -> h):

・hypothesisがどれだけgold-referenceに基づいてこう良くされているかを亜評価でき、precision-focusedなシナリオに適している

・Recall (h -> r):

・hypothesisから、gold referenceをどれだけ容易に再現できるかを測ることができる。そして、要約タスクのpyramid-basedな評価(i.e. semantic coverage等) に適している。pyramid-scoreはSemantic Content Unitsがどれだけカバーされているかによって評価される。

・F Score (r <-> h):

・双方向を考慮し、Precisioon / RecallからF値を算出する。この方法は、referenceと生成テキスト間でのsemantic overlap (informativenss, adequacy)などの評価に広く利用される。



BARTScore Variants

BARTScoreの2つの拡張を提案。(i) xとyをpromptingによって変更する。これにより、評価タスクをpre-training taskと近づける。(ii) パラメータΘを異なるfinetuning taskを考慮して変更する。すなわち、pre-trainingのドメインを、evaluation taskに近づける。

Prompt

Promptingはinput/outputに対して短いフレーズを追加し、pre-trained modelに対して特定のタスクを遂行させる方法である。BARTにも同様の洞察を簡単に組み込むことができる。この変種をBARTScore-PROMPTと呼ぶ。

prompt zが与えられたときに、それを (i) source textに追加し、新たなsource textを用いてBARTScoreを計算する。(ii) target textの先頭に追加し、new target textに対してBARTScoreを計算する。

Fine-tuning Task

classification-basedなタスクでfine-tuneされるのが一般的なBERT-based metricとは異なり、BARTScoreはgeneration taskでfine-tuneされるため、pre-training domainがevaluation taskと近い。本研究では、2つのdownstream taskを検証する。

1つめは、summarizationで、BARTをCNNDM datasetでfinetuningする。2つめは、paraphrasingで、summarizationタスクでfinetuningしたBARTをParaBank2 datasetでさらにfinetuningする。実験

baselines and datasets

Evaluation Metrics

supervised metrics: COMET, BLEURT

unsupervised: BLEU, ROUGE-1, ROUGE-2, ROUGE-L, chrF, PRISM, MoverScore, BERTScore

と比較

Measures for Meta Evaluation

Pearson Correlationでlinear correlationを測る。また、Spearman Correlationで2変数間の単調なcorrelationを測定する(線形である必要はない)。Kendall's Tauを用いて、2つの順序関係の関係性を測る。最後に、Accuracyでfactual textsとnon-factual textの間でどれだけ正しいランキングを得られるかを測る。



Datasets

Summarization, MT, DataToTextの3つのデータセットを利用。

image



Setup

Prompt Design

seedをparaphrasingすることで、 s->h方向には70個のpromptを、h<->rの両方向には、34のpromptを得て実験で用いた。

image



Settings

Summarizationとdata-to-textタスクでは、全てのpromptを用いてデコーダの頭に追加してスコアを計算しスコアを計算した。最終的にすべての生成されたスコアを平均することである事例に対するスコアを求めた(prompt unsembling)。MTについては、事例数が多くcomputational costが多くなってしまうため、WMT18を開発データとし、best prompt "Such as"を選択し、利用した。

BARTScoreを使う際は、gold standard human evaluationがrecall-basedなpyrmid methodの場合はBARTScore(h->r)を用い、humaan judgmentsがlinguistic quality (coherence fluency)そして、factual correctness、あるいは、sourceとtargetが同じモダリティ(e.g. language)の場合は、faitufulness-based BARTScore(s->h)を用いた。最後に、MTタスクとdata-to-textタスクでは、fair-comparisonのためにBARTScore F-score versionを用いた。

実験結果

MT

・BARTScoreはfinetuning tasksによって性能が向上し、5つのlanguage pairsにおいてその他のunsupervised methodsを統計的に優位にoutperformし、2つのlanguage pairでcomparableであった。

-Such asというpromptを追加するだけで、BARTScoreの性能が改善した。特筆すべきは、de-enにおいては、SoTAのsupervised MetricsであるBLEURTとCOMETを上回った。

・これは、有望な将来のmetric designとして「human judgment dataで訓練する代わりに、pre-trained language modelに蓄積された知識をより適切に活用できるpromptを探索する」という方向性を提案している。

image



Text Summarization

・vanilla BARTScoreはBERTScore, MoverScoreをInfo perspective以外でlarge marginでうくぁ回った。

・REALSum, SummEval dataseetでの改善は、finetuning taskによってさらに改善した。しかしながら、NeR18では改善しなかった。これは、データに含まれる7つのシステムが容易に区別できる程度のqualityであり、既にvanilla BARTScoreで高いレベルのcorrelationを達成しているからだと考えられる。

・prompt combination strategyはinformativenssに対する性能を一貫して改善している。しかし、fluency, factualityでは、一貫した改善は見られなかった。

image



Factuality datasetsに対する分析を行った。ゴールは、short generated summaryが、元のlong documentsに対してfaithfulか否かを判定するというものである。

・BARTScore+CNNは、Rank19データにおいてhuman baselineに近い性能を達成し、ほかのベースラインを上回った。top-performingなfactuality metricsであるFactCCやQAGSに対してもlarge marginで上回った。

・paraphraseをfine-tuning taskで利用すると、BARTScoreのパフォーマンスは低下した。これは妥当で、なぜなら二つのテキスト(summary and document)は、paraphrasedの関係性を保持していないからである。

・promptを導入しても、性能の改善は見受けられず、パフォーマンスは低下した。

image



Data-to-Text

・CNNDMでfine-tuningすることで、一貫してcorrelationが改善した。

・加えて、paraphraseデータセットでfinetuningすることで、さらに性能が改善した。

・prompt combination strategyは一貫してcorrelationを改善した。

image

Analysis

Fine-grained Analysis

・Top-k Systems: MTタスクにおいて、評価するシステムをtop-kにし、各メトリックごとにcorrelationの変化を見た。その結果、BARTScoreはすべてのunsupervised methodをすべてのkにおいて上回り、supervised metricのBLEURTも上回った。また、kが小さくなるほど、より性能はsmoothになっていき、性能の低下がなくなっていった。これはつまり、high-quality textを生成するシステムに対してロバストであることを示している。

・Reference Length: テストセットを4つのバケットにreference lengthに応じてブレイクダウンし、Kendall's Tauの平均のcorrelationを、異なるメトリック、バケットごとに言語をまたいで計算した。unsupervised metricsに対して、全てのlengthに対して、引き分けかあるいは上回った。また、ほかのmetricsと比較して、長さに対して安定感があることが分かった。

image



Prompt Analysis

(1) semantic overlap (informativeness, pyramid score, relevance), (2) linguistic quality (fluency, coherence), (3) factual correctness (factuality) に評価の観点を分類し、summarizationとdata-to-textをにおけるすべてのpromptを分析することで、promptの効果を分析した。それぞれのグループに対して、性能が改善したpromptの割合を計算した。その結果、semantic overlapはほぼ全てのpromptにて性能が改善し、factualityはいくつかのpromptでしか性能の改善が見られなかった。linguistic qualityに関しては、promptを追加することによる効果はどちらとも言えなかった。



Bias Analysis

BARTScoreが予測不可能な方法でバイアスを導入してしまうかどうかを分析した。バイアスとは、human annotatorが与えたスコアよりも、値が高すぎる、あるいは低すぎるような状況である。このようなバイアスが存在するかを検証するために、human annotatorとBARTScoreによるランクのサを分析した。これを見ると、BARTScoreは、extractive summarizationの品質を区別する能力がabstractive summarizationの品質を区別する能力よりも劣っていることが分かった。しかしながら、近年のトレンドはabstractiveなseq2seqを活用することなので、この弱点は軽減されている。



Implications and Future Directions

prompt-augmented metrics: semantic overlapではpromptingが有効に働いたが、linguistic qualityとfactualityでは有効ではなかった。より良いpromptを模索する研究が今後期待される。

Co-evolving evaluation metrics and systems: BARTScoreは、メトリックデザインとシステムデザインの間につながりがあるので、より性能の良いseq2seqシステムが出たら、それをメトリックにも活用することでよりreliableな自動性能指標となることが期待される。



image

#Metrics #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 Towards Question-Answering as an Automatic Metric for Evaluating the Content Quality of a Summary, Deutsch+, TACL'21 Summary要約の品質を評価するための新しい指標であるQAEvalを提案する。QAEvalは質問応答(QA)を使用して要約と参照の情報の重複を測定するため、従来のテキストの重複に基づく指標とは異なる。実験結果から、QAEvalは現在の最先端の指標よりも優れたパフォーマンスを示し、他の評価とも競争力があることがわかった。QAEvalの構成要素を分析することで、その潜在的な上限パフォーマンスは他の自動評価指標を上回り、ゴールドスタンダードのピラミッドメソッドに近づくと推定される。 #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 ESTIME: Estimation of Summary-to-Text Inconsistency by Mismatched Embeddings, Eval4NLP'21 Summary私たちは、新しい参照なし要約品質評価尺度を提案します。この尺度は、要約とソースドキュメントの間の潜在的な矛盾を見つけて数えることに基づいています。提案された尺度は、一貫性と流暢さの両方で他の評価尺度よりも専門家のスコアと強い相関を示しました。また、微妙な事実の誤りを生成する方法も紹介しました。この尺度は微妙なエラーに対してより感度が高いことを示しました。 #Tutorial #NLP #Dataset #TACL Issue Date: 2021-10-20 WikiAsp: A Dataset for Multi-domain Aspect-based Summarization, Hayashi+, CMU, TACL'21, NLPコロキウム Comment◆Aspect-based summarizationのモチベーション

・same source対して、異なるユーザニーズが存在するので、ニーズに関して要約したい



◆Aspect: あるobjectに対する、attributeのようなものを指定?

 object: Attention Is All You Need

 aspect: Multi-Head Attention



◆Aspect Based Summarizationの歴史

・はじめは”feature”という文言で研究され(04年頃?)

・続いてkeywordsという単語で研究され

・その後Aspectという文言で研究されるようになった

・2008年頃にMcDonaldsらがAspect-Based Summarizationを提案した

・2014年以後?とかにNeural Basedな手法が盛んに研究



◆WikiAspデータセットについて

・Wikipediaを使ったAspect-based dataset

・Wikipediaを書かれるのに利用されたsource document(wikipediaにソースとして引用されているもの)に対し、aspectを各節の見出しとみなし、節のテキストを要約文とみなすことで、データセット生成

・他のAspect-basedデータセットと異なり、ソースデータが長く、要約長も5~6倍程度

・ドメイン数が他データセットは5,6程度に対し、20と膨大



◆ベースラインとして2-stageモデルを採用

first-stage: ソーステキストからROBERTaベースドなclassifierを用いて、sentencesから内包するAspectを閾値を用いて決定

     それらをgrouped sentencesとする

two-stage: 各aspectごとにまとまったテキスト集合に対して、要約モデルを適用し、要約を実施する

・要約モデルはUnsupervisedな手法であるTextRankと、Supervisedな手法であるBERTベースな手法を採用

・ドメインごとに評価した結果を見ると、BERTが強いドメインがある一方で、TextRankが強いドメインもあった

 -> Extractiveな形で要約されているドメインではTextRankが強く、Abstractiveに要約されているドメインではBERTが強い

 -> またBERTは比較的短い要約であればTextRankよりもはるかに良いが、長い要約文になるとTextRankとcomprable(あるいはTextRankの方が良い)程度の性能になる

・ROUGE-2の値がsentence-basedなORACLEを見た時に、他データセットと比較して低いので、Abstractiveな手法が必要なデータセット?



(後からのメモなので少しうろ覚えな部分あり)Q. ROUGE-2が30とかって直観的にどのくらいのレベルのものなの?ROUGE-2が30とか40とかは高い

・最先端の要約モデルをニュース記事に適用すると、35~40くらいになる。

・このレベルの数値になると、人間が呼んでも違和感がないレベルの要約となっているQ. 実際に要約文をチェックしてみて、どういう課題を感じるか?

A. Factual Consistencyがすぐに目につく問題で、特にBERTベースな要約文はそう。TextRankはソース文書がノイジーなので、ソース文章を適当に拾ってきただけではFactual Consistencyが良くない(元の文書がかっちりしていない)。流暢性の問題はAbstractiveモデルだと特に問題なくBERT-baseでできる。Aspect-based要約のエラー例としてAspectに則っていないということがある。たとえばオバマの大統領時代の話をきいているのに、幼少時代の話をしているとか。Aspect情報をうまくモデルを扱えていないという点が課題としてある。出典元(リアルタイムに聴講): 第13回 WikiAsp: A Dataset for Multi-domain Aspect-based Summarization, NLPコロキウム
https://youtu.be/3PIJotX6i_w?si=hX5pXwNL-ovkGSF5
#NeuralNetwork #NaturalLanguageGeneration #NLP #LanguageModel #PEFT(Adaptor/LoRA) #ACL Issue Date: 2021-09-09 Prefix-Tuning: Optimizing Continuous Prompts for Generation, Lisa+ (Percy Liang), Stanford University, ACL'21 Comment言語モデルをfine-tuningする際,エンコード時に「接頭辞」を潜在表現として与え,「接頭辞」部分のみをfine-tuningすることで(他パラメータは固定),より少量のパラメータでfine-tuningを実現する方法を提案.接頭辞を潜在表現で与えるこの方法は,GPT-3のpromptingに着想を得ている.fine-tuningされた接頭辞の潜在表現のみを配布すれば良いので,非常に少量なパラメータでfine-tuningができる.



table-to-text, summarizationタスクで,一般的なfine-tuningやAdapter(レイヤーの間にアダプターを挿入しそのパラメータだけをチューニングする手法)といった効率的なfine-tuning手法と比較.table-to-textでは、250k (元のモデルの 0.1%) ほどの数のパラメータを微調整するだけで、全パラメータをfine-tuningするのに匹敵もしくはそれ以上の性能を達成.



image

Hugging Faceの実装を利用したと論文中では記載されているが,fine-tuningする前の元の言語モデル(GPT-2)はどのように準備したのだろうか.Hugging Faceのpretrained済みのGPT-2を使用したのだろうか.autoregressive LM (GPT-2)と,encoder-decoderモデル(BART)へPrefix Tuningを適用する場合の模式図

image

#Pocket #NLP #Abstractive #Factuality #Faithfulness #ACL Issue Date: 2025-07-14 [Paper Note] On Faithfulness and Factuality in Abstractive Summarization, Joshua Maynez+, ACL'20 Summary抽象的な文書要約における言語モデルの限界を分析し、これらのモデルが入力文書に対して忠実でない内容を生成する傾向が高いことを発見。大規模な人間評価を通じて、生成される幻覚の種類を理解し、すべてのモデルで相当量の幻覚が確認された。事前学習されたモデルはROUGE指標だけでなく、人間評価でも優れた要約を生成することが示された。また、テキストの含意測定が忠実性と良好に相関することが明らかになり、自動評価指標の改善の可能性を示唆。 Comment文書要約の文脈において `hallucination` について説明されている。
・1044

が `hallucination` について言及する際に引用している。
#NeuralNetwork #NLP #ICML #Admin'sPick Issue Date: 2025-05-13 PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization, Jingqing Zhang+, ICML'20 Summary大規模なテキストコーパスに対して新しい自己教師ありの目的でトランスフォーマーを事前学習し、抽象的なテキスト要約に特化したモデルPEGASUSを提案。重要な文を削除またはマスクし、残りの文から要約を生成。12の下流要約タスクで最先端のROUGEスコアを達成し、限られたリソースでも優れたパフォーマンスを示す。人間評価でも複数のデータセットで人間のパフォーマンスに達したことを確認。 CommentPEGASUSもなかったので追加。BARTと共に文書要約のBackboneとして今でも研究で利用される模様。関連:
・984
#Metrics #Pocket #NLP #Evaluation #Reference-free #QA-based Issue Date: 2023-08-20 Asking and Answering Questions to Evaluate the Factual Consistency of Summaries, Wang, ACL'20 Summary要約の事実の不整合を特定するための自動評価プロトコルであるQAGSを提案する。QAGSは、要約とソースについて質問をし、整合性がある回答を得ることで要約の事実的整合性を評価する。QAGSは他の自動評価指標と比較して高い相関を持ち、自然な解釈可能性を提供する。QAGSは有望なツールであり、https://github.com/W4ngatang/qagsで利用可能。 CommentQAGS生成された要約からQuestionを生成する手法。precision-oriented #Pocket #NLP #Hallucination Issue Date: 2023-08-16 Reducing Quantity Hallucinations in Abstractive Summarization, Zheng Zhao+, N_A, EMNLP'20 SummaryHermanシステムは、抽象的な要約において幻覚を回避するために、数量エンティティを認識し、元のテキストでサポートされている数量用語を持つ要約を上位にランク付けするアプローチを提案しています。実験結果は、このアプローチが高い適合率と再現率を持ち、F$_1$スコアが向上することを示しています。また、上位にランク付けされた要約が元の要約よりも好まれることも示されています。 Comment数量に関するhallucinationを緩和する要約手法 #Metrics #NLP #Evaluation #QA-based Issue Date: 2023-08-16 FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization, Durmus+, ACL'20 Summaryニューラル抽象的要約モデルの信頼性を評価するために、人間の注釈を収集し、信頼性の自動評価指標であるFEQAを提案した。FEQAは質問応答を利用して要約の信頼性を評価し、特に抽象的な要約において人間の評価と高い相関を示した。 CommentFEQA生成された要約からQuestionを生成する手法。precision-oriented #Metrics #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 HOLMS: Alternative Summary Evaluation with Large Language Models, Mrabet+, COLING'20 Summary要約手法の評価尺度として、ROUGEとBLEUが一般的に使用されているが、これらは語彙的な性質を持ち、ニューラルネットワークのトレーニングには限定的な可能性がある。本研究では、大規模なコーパスで事前学習された言語モデルと語彙的類似度尺度を組み合わせた新しい評価尺度であるHOLMSを提案する。実験により、HOLMSがROUGEとBLEUを大幅に上回り、人間の判断との相関も高いことを示した。 CommentHybrid Lexical and MOdel-based evaluation of Summaries (HOLMS) #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 Unsupervised Reference-Free Summary Quality Evaluation via Contrastive Learning, Hanlu Wu+, N_A, EMNLP'20 Summary本研究では、参照要約なしで要約の品質を評価するために教師なしの対照的学習を提案しています。新しいメトリックを設計し、ランキング損失でモデルを訓練することで、要約品質の異なる側面に関する異なるタイプのネガティブサンプルを構築します。実験結果は、参照要約なしでも他のメトリックよりも優れた評価方法であることを示しています。また、提案手法が一般的かつ転移可能であることも示されています。 CommentLS_Score色々なメトリックが簡潔にまとまっている #Metrics #NLP #Evaluation #LM-based #Factuality Issue Date: 2023-08-13 Evaluating the Factual Consistency of Abstractive Text Summarization, Kryscinski+, EMNLP'20 Summary本研究では、要約の事実的な整合性を検証するためのモデルベースのアプローチを提案しています。トレーニングデータはルールベースの変換を用いて生成され、モデルは整合性の予測とスパン抽出のタスクで共同してトレーニングされます。このモデルは、ニューラルモデルによる要約に対して転移学習を行うことで、以前のモデルを上回る性能を示しました。さらに、人間の評価でも補助的なスパン抽出タスクが有用であることが示されています。データセットやコード、トレーニング済みモデルはGitHubで公開されています。 CommentFactCC近年のニューラルモデルは流ちょうな要約を生成するが、それらには、unsuportedなinformationが多く含まれていることを示した #Metrics #NLP #Evaluation #Reference-free #LM-based Issue Date: 2023-08-13 Automatic Machine Translation Evaluation in Many Languages via Zero-Shot Paraphrasing, Thompson+, EMNLP'20 Summaryパラフレーザを使用して機械翻訳の評価を行うタスクを定義し、多言語NMTシステムをトレーニングしてパラフレーシングを行います。この手法は直感的であり、人間の判断を必要としません。39言語でトレーニングされた単一モデルは、以前のメトリクスと比較して優れたパフォーマンスを示し、品質推定のタスクでも優れた結果を得ることができます。 CommentPRISM #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 Fill in the BLANC: Human-free quality estimation of document summaries, Vasilyev+, Eval4NLP'20 SummaryBLANCは、要約の品質を自動的に推定するための新しいアプローチです。BLANCは、事前学習済みの言語モデルを使用してドキュメントの要約にアクセスし、要約の機能的なパフォーマンスを測定します。BLANCスコアは、ROUGEと同様に人間の評価と良好な相関関係を持ち、人間によって書かれた参照要約が不要なため、完全に人間不在の要約品質推定が可能です。 #NLP #Evaluation #Reference-free #Training-Free Issue Date: 2023-08-13 SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization, Gao+, ACL'20 Summaryこの研究では、教師なしの複数文書要約評価メトリックスについて調査しています。提案手法SUPERTは、擬似的な参照要約として選択された重要な文を使用し、文脈化埋め込みとソフトトークンアラインメント技術を用いて要約の品質を評価します。SUPERTは従来の教師なし評価メトリックスよりも人間の評価との相関が高く、18〜39%の向上が見られます。また、SUPERTを報酬として使用してニューラルベースの強化学習要約器をガイドすることで、有利なパフォーマンスを実現しています。ソースコードはGitHubで入手可能です。 Commentpseudo-reference summaryを作成し、referenceに対してSBERTを適用しsystem-reference間の類似度を測ることで、unsupervisedに複数文書要約を評価する手法。

まずTACのデータに対して、既存研究(single document summarizationの評価用に提案された手法)を適用し、Human Ratingsとの相関が低いことを確認している。この時、Referenceを用いる手法(ROUGE、MoverScore)の相関をUpper Boundとし、Upper Boundに及ばないことを確認している。また、既存研究よりもシンプルなJS Divergence等を用いるlexical basedな手法の相関が高かったことも確認している。
続いて、unsupervisedな手法として、contextualなembeddingを利用し(BERT, SBERT等)source, system summary間の類似度を測る手法で相関を測ったところ、こちらでもUpper Boundに及ばないこと、シンプルな手法に及ばないことを確認。これら手法にWMDを応用するすることで相関が向上することを確認した。
これらのことより、Referenceがある場合、無い場合の両者においてWMDを用いる手法が有効であることが確認できたが、Referenceの有無によって相関に大きな差が生まれていることが確認できた。このことから、何らかの形でReferenceが必要であり、pseudo referenceを生成し利用することを着想した、というストーリーになっている。pseudo referenceを生成する方法として、top Nのリード文を抽出する手法や、LexRankのようなGraphBasedな手法を利用してTACデータにおいてどのような手法が良いかを検証している。この結果、TAC8,9の場合はTop 10,15のsentenceをpseudo referenceとした場合が最も良かった。

細かいところまで読みきれていないが、自身が要約したい文書群においてどの方法でpseudo referenceを生成するかは、Referenceがないと判断できないと考えられるため、その点は課題だと考えられる。
#Metrics #NLP #Evaluation #Reference-based #TrainedMetrics Issue Date: 2023-08-13 BLEURT: Learning Robust Metrics for Text Generation, Sellam+, ACL'20 SummaryBLEURTは、BERTをベースとした学習済みの評価指標であり、人間の判断と高い相関を持つことが特徴です。BLEURTは、数千のトレーニング例を使用してバイアスのある評価をモデル化し、数百万の合成例を使用してモデルの汎化を支援します。BLEURTは、WMT Metrics共有タスクとWebNLGデータセットで最先端の結果を提供し、トレーニングデータが少ない場合や分布外の場合でも優れた性能を発揮します。 #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Reference-based #Admin'sPick Issue Date: 2023-05-10 BERTScore: Evaluating Text Generation with BERT, Tianyi Zhang+, N_A, ICLR'20 SummaryBERTScoreは、文脈埋め込みを使用してトークンの類似度を計算するテキスト生成の自動評価メトリックであり、363の機械翻訳および画像キャプションシステムの出力を使用して評価されました。BERTScoreは、既存のメトリックよりも人間の判断との相関が高く、より強力なモデル選択性能を提供し、敵対的な言い換え検出タスクにおいてもより堅牢であることが示されました。 Comment概要
既存のテキスト生成の評価手法(BLEUやMETEOR)はsurface levelのマッチングしかしておらず、意味をとらえられた評価になっていなかったので、pretrained BERTのembeddingを用いてsimilarityを測るような指標を提案しましたよ、という話。

prior metrics
n-gram matching approaches
n-gramがreferenceとcandidateでどれだけ重複しているかでPrecisionとrecallを測定
image

BLEU
MTで最も利用される。n-gramのPrecision(典型的にはn=1,2,3,4)と短すぎる候補訳にはペナルティを与える(brevity penalty)ことで実現される指標。SENT-BLEUといった亜種もある。BLEUと比較して、BERTScoreは、n-gramの長さの制約を受けず、潜在的には長さの制限がないdependencyをcontextualized embeddingsでとらえることができる。

METEOR
669 METEOR 1.5では、内容語と機能語に異なるweightを割り当て、マッチングタイプによってもweightを変更する。METEOR++2.0では、学習済みの外部のparaphrase resourceを活用する。METEORは外部のリソースを必要とするため、たった5つの言語でしかfull feature setではサポートされていない。11の言語では、恥部のfeatureがサポートされている。METEORと同様に、BERTScoreでも、マッチに緩和を入れていることに相当するが、BERTの事前学習済みのembeddingは104の言語で取得可能である。BERTScoreはまた、重要度によるweightingをサポートしている(コーパスの統計量で推定)。

Other Related Metrics
・NIST: BLEUとは異なるn-gramの重みづけと、brevity penaltyを利用する
・ΔBLEU: multi-reference BLEUを、人手でアノテーションされたnegative reference sentenceで変更する
・CHRF: 文字n-gramを比較する
・CHRF++: CHRFをword-bigram matchingに拡張したもの
・ROUGE: 文書要約で利用される指標。ROUGE-N, ROUGE^Lといった様々な変種がある。
・CIDEr: image captioningのmetricであり、n-gramのtf-idfで重みづけされたベクトルのcosine similrityを測定する

Edit-distance based Metrics
・Word Error Rate (WER): candidateからreferenceを再現するまでに必要なedit operationの数をカウントする手法
・Translation Edit Rate (TER): referenceの単語数によってcandidateからreferenceまでのedit distanceを正規化する手法
・ITER: 語幹のマッチと、より良い正規化に基づく手法
・PER: positionとは独立したError Rateを算出
・CDER: edit operationにおけるblock reorderingをモデル化
・CHARACTER / EED: character levelで評価

Embedding-based Metrics
・MEANT 2.0: lexical, structuralの類似度を測るために、word embeddingとshallow semantic parsesを利用
・YISI-1: MEANT 2.0と同様だが、semantic parseの利用がoptionalとなっている
これらはBERTScoreと同様の、similarityをシンプルに測るアプローチで、BERTScoreもこれにinspireされている。が、BERTScoreはContextualized Embeddingを利用する点が異なる。また、linguistic structureを生成するような外部ツールは利用しない。これにより、BERTScoreをシンプルで、新たなlanguageに対しても使いやすくしている。greedy matchingの代わりに、WMD, WMDo, SMSはearth mover's distanceに基づく最適なマッチングを利用することを提案している。greedy matchingとoptimal matchingのtradeoffについては研究されている。sentence-levelのsimilarityを計算する手法も提案されている。これらと比較して、BERTScoreのtoken-levelの計算は、重要度に応じて、tokenに対して異なる重みづけをすることができる。

Learned Metrics
様々なmetricが、human judgmentsとのcorrelationに最適化するために訓練されてきた。
・BEER: character-ngram, word bigramに基づいたregresison modelを利用
・BLEND: 29の既存のmetricを利用してregressionを実施
・RUSE: 3種類のpre-trained sentence embedding modelを利用する手法
これらすべての手法は、コストのかかるhuman judgmentsによるsupervisionが必要となる。そして、新たなドメインにおける汎化能力の低さのリスクがある。input textが人間が生成したものか否か予測するneural modelを訓練する手法もある。このアプローチは特定のデータに対して最適化されているため、新たなデータに対して汎化されないリスクを持っている。これらと比較して、BERTScoreは特定のevaluation taskに最適化されているモデルではない。

BERTScore
referenceとcandidateのトークン間のsimilarityの最大値をとり、それらを集約することで、Precision, Recallを定義し、PrecisionとRecallを利用してF値も計算する。Recallは、reference中のすべてのトークンに対して、candidate中のトークンとのcosine similarityの最大値を測る。一方、Precisionは、candidate中のすべてのトークンに対して、reference中のトークンとのcosine similarityの最大値を測る。ここで、類似度の式が単なる内積になっているが、これはpre-normalized vectorを利用する前提であり、正規化が必要ないからである。
image

また、IDFによるトークン単位でのweightingを実施する。IDFはテストセットの値を利用する。TFを使わない理由は、BERTScoreはsentence同士を比較する指標であるため、TFは基本的に1となりやすい傾向にあるためである。IDFを計算する際は出現数を+1することによるスムージングを実施。
image

さらに、これはBERTScoreのランキング能力には影響を与えないが、BERTScoreの値はコサイン類似度に基づいているため、[-1, 1]となるが、実際は学習したcontextual embeddingのgeometryに値域が依存するため、もっと小さなレンジでの値をとることになってしまう。そうすると、人間による解釈が難しくなる(たとえば、極端な話、スコアの0.1程度の変化がめちゃめちゃ大きな変化になってしまうなど)ため、rescalingを実施。rescalingする際は、monolingualコーパスから、ランダムにsentenceのペアを作成し(BETRScoreが非常に小さくなるケース)、これらのBERTScoreを平均することでbを算出し、bを利用してrescalingした。典型的には、rescaling後は典型的には[0, 1]の範囲でBERTScoreは値をとる(ただし数式を見てわかる通り[0, 1]となることが保証されているわけではない点に注意)。これはhuman judgmentsとのcorrelationとランキング性能に影響を与えない(スケールを変えているだけなので)。
image
image
実験

Contextual Embedding Models

12種類のモデルで検証。BERT, RoBERTa, XLNet, XLMなど。



Machine Translation

WMT18のmetric evaluation datasetを利用。149種類のMTシステムの14 languageに対する翻訳結果, gold referencesと2種類のhuman judgment scoreが付与されている。segment-level human judgmentsは、それぞれのreference-candiate pairに対して付与されており、system-level human judgmentsは、それぞれのシステムに対して、test set全体のデータに基づいて、単一のスコアが付与されている。pearson correlationの絶対値と、kendall rank correration τをmetricsの品質の評価に利用。そしてpeason correlationについてはWilliams test、kendall τについては、bootstrap re-samplingによって有意差を検定した。システムレベルのスコアをBERTScoreをすべてのreference-candidate pairに対するスコアをaveragingすることによって求めた。また、ハイブリッドシステムについても実験をした。具体的には、それぞれのreference sentenceについて、システムの中からランダムにcandidate sentenceをサンプリングした。これにより、system-level experimentをより多くのシステムで実現することができる。ハイブリッドシステムのシステムレ4ベルのhuman judgmentsは、WMT18のsegment-level human judgmentsを平均することによって作成した。BERTScoreを既存のメトリックと比較した。



通常の評価に加えて、モデル選択についても実験した。10kのハイブリッドシステムを利用し、10kのうち100をランダムに選択、そして自動性能指標でそれらをランキングした。このプロセスを100K回繰り返し、human rankingとmetricのランキングがどれだけagreementがあるかをHits@1で評価した(best systemの一致で評価)。モデル選択の指標として新たにtop metric-rated systemとhuman rankingの間でのMRR, 人手評価でtop-rated systemとなったシステムとのスコアの差を算出した。WMT17, 16のデータセットでも同様の評価を実施した。



Image Captioning

COCO 2015 captioning challengeにおける12種類のシステムのsubmissionデータを利用。COCO validationセットに対して、それぞれのシステムはimageに対するcaptionを生成し、それぞれのimageはおよそ5個のreferenceを持っている。先行研究にならい、Person Correlationを2種類のシステムレベルmetricで測定した。

・M1: 人間によるcaptionと同等、あるいはそれ以上と評価されたcaptionの割合

・M2: 人間によるcaptionと区別がつかないcaptionの割合

BERTScoreをmultiple referenceに対して計算し、最も高いスコアを採用した。比較対象のmetricはtask-agnostic metricを採用し、BLEU, METEOR, CIDEr, BEER, EED, CHRF++, CHARACTERと比較した。そして、2種類のtask-specific metricsとも比較した:SPICE, LEIC



実験結果

Machine Translation

system-levelのhuman judgmentsとのcorrelationの比較、hybrid systemとのcorrelationの比較、model selection performance

to-Englishの結果では、BERTScoreが最も一貫して性能が良かった。RUSEがcompetitiveな性能を示したが、RUSEはsupervised methodである。from-Englishの実験では、RUSEは追加のデータと訓練をしないと適用できない。

image

image

image



以下は、segment-levelのcorrelationを示したものである。BERTScoreが一貫して高い性能を示している。BLEUから大幅な性能アップを示しており、特定のexampleについての良さを検証するためには、BERTScoreが最適であることが分かる。BERTScoreは、RUSEをsignificantlyに上回っている。idfによる重要度のweightingによって、全体としては、small benefitがある場合があるが全体としてはあんまり効果がなかった。importance weightingは今後の課題であり、テキストやドメインに依存すると考えられる。FBERTが異なる設定でも良く機能することが分かる。異なるcontextual embedding model間での比較などは、appendixに示す。

image



Image Captioning

task-agnostic metricの間では、BETRScoreはlarge marginで勝っている。image captioningはchallengingな評価なので、n-gramマッチに基づくBLEU, ROUGEはまったく機能していない。また、idf weightingがこのタスクでは非常に高い性能を示した。これは人間がcontent wordsに対して、より高い重要度を置いていることがわかる。最後に、LEICはtrained metricであり、COCO dataに最適化されている。この手法は、ほかのすべてのmetricを上回った。

image



Speed

pre-trained modelを利用しているにもかかわらず、BERTScoreは比較的高速に動作する。192.5 candidate-reference pairs/secondくらい出る(GTX-1080Ti GPUで)。WMT18データでは、15.6秒で処理が終わり、SacreBLEUでは5.4秒である。計算コストそんなにないので、BERTScoreはstoppingのvalidationとかにも使える。Robustness analysis

BERTScoreのロバスト性をadversarial paraphrase classificationでテスト。Quora Question Pair corpus (QQP) を利用し、Word Scrambling dataset (PAWS) からParaphrase Adversariesを取得。どちらのデータも、各sentenceペアに対して、それらがparaphraseかどうかラベル付けされている。QQPの正例は、実際のduplicate questionからきており、負例は関連するが、異なる質問からきている。PAWSのsentence pairsは単語の入れ替えに基づいているものである。たとえば、"Flights from New York to Florida" は "Flights from Florida to New York" のように変換され、良いclassifierはこれらがparaphraseではないと認識できなければならない。PAWSはPAWS_QQPとPAWS_WIKIによって構成さえrており、PAWS_QQPをdevelpoment setとした。automatic metricsでは、paraphrase detection training dataは利用しないようにした。自動性能指標で高いスコアを獲得するものは、paraphraseであることを想定している。



下図はAUCのROC curveを表しており、PAWS_QQPにおいて、QQPで訓練されたclassifierはrandom guessよりも性能が低くなることが分かった。つまりこれらモデルはadversaial exampleをparaphraseだと予測してしまっていることになる。adversarial examplesがtrainingデータで与えられた場合は、supervisedなモデルも分類ができるようになる。が、QQPと比べると性能は落ちる。多くのmetricsでは、QQP ではまともなパフォーマンスを示すが、PAWS_QQP では大幅なパフォーマンスの低下を示し、ほぼrandomと同等のパフォーマンスとなる。これは、これらの指標がより困難なadversarial exampleを区別できないことを示唆している。一方、BERTSCORE のパフォーマンスはわずかに低下するだけであり、他の指標よりもロバスト性が高いことがわかる。

image



Discussion

・BERTScoreの単一の設定が、ほかのすべての指標を明確に上回るということはない

・ドメインや言語を考慮して、指標や設定を選択すべき

・一般的に、機械翻訳の評価にはFBERTを利用することを推奨

・英語のテキスト生成の評価には、24層のRoBERTa largeモデルを使用して、BERTScoreを計算したほうが良い

・非英語言語については、多言語のBERT_multiが良い選択肢だが、このモデルで計算されたBERTScoreは、low resource languageにおいて、パフォーマンスが安定しているとは言えない
#NeuralNetwork #MachineTranslation #NLP #Transformer #pretrained-LM Issue Date: 2022-12-01 Leveraging Pre-trained Checkpoints for Sequence Generation Tasks, Rothe+, Google Research, TACL'20 Comment概要

BERT-to-BERT論文。これまでpre-trainedなチェックポイントを利用する研究は主にNLUで行われてきており、Seq2Seqでは行われてきていなかったので、やりました、という話。

publicly availableなBERTのcheckpointを利用し、BERTをencoder, decoder両方に採用することでSeq2Seqを実現。実現する上で、

1. decoder側のBERTはautoregressiveな生成をするようにする(左側のトークンのattentionしか見れないようにする)

2. encoder-decoder attentionを新たに導入する

の2点を工夫している。



実験

Sentence Fusion, Sentence Split, Machine Translation, Summarizationの4タスクで実験



MT

image

BERT2BERTがSoTA達成。Edunov+の手法は、data _augmentationを利用した手法であり、純粋なWMT14データを使った中ではSoTAだと主張。特にEncoder側でBERTを使うと、Randomにinitializeした場合と比べて性能が顕著に上昇しており、その重要性を主張。

Sentence Fusion, Sentence Splitでは、encoderとdecoderのパラメータをshareするのが良かったが、MTでは有効ではなかった。これはMTではmodelのcapacityが非常に重要である点、encoderとdecoderで異なる文法を扱うためであると考えられる。



Summarization

BERTSHARE, ROBERTASHAREの結果が良かった。

image

#PersonalizedDocumentSummarization #NaturalLanguageGeneration #Metrics #NLP #DataToTextGeneration #ConceptToTextGeneration #DialogueGeneration #PersonalizedGeneration Issue Date: 2021-06-02 NUBIA, EvalNLGEval'20 CommentTextGenerationに関するSoTAの性能指標。BLEU, ROUGE等と比較して、人間との相関が高い。

image



image

pretrainedされたlanguage model(GPT-2=sentence legibility, RoBERTa_MNLI=logical inference, RoBERTa_STS=semantic similarity)を使い、Fully Connected Layerを利用してquality スコアを算出する。算出したスコアは最終的にcalibrationで0~1の値域に収まるように補正される。意味的に同等の内容を述べた文間でのexample

image

BLEU, ROUGE, BERTのスコアは低いが、NUBIAでは非常に高いスコアを出せている。
#NeuralNetwork #NLP #Extractive Issue Date: 2023-08-28 Text Summarization with Pretrained Encoders, Liu+ (with Lapata), EMNLP-IJCNLP'19 Summary本研究では、最新の事前学習言語モデルであるBERTを使用して、テキスト要約のための一般的なフレームワークを提案します。抽出型モデルでは、新しいエンコーダを導入し、文の表現を取得します。抽象的な要約については、エンコーダとデコーダの最適化手法を異ならせることで不一致を緩和します。さらに、2段階のファインチューニングアプローチによって要約の品質を向上させました。実験結果は、提案手法が最先端の結果を達成していることを示しています。 CommentBERTSUMEXT論文通常のBERTの構造と比較して、文ごとの先頭に[CLS]トークンを挿入し、かつSegment Embeddingsを文ごとに交互に変更することで、文のrepresentationを取得できるようにする。

その後、encodingされたsentenceの[CLS]トークンに対応するembeddingの上に、inter-sentence Transformer layerを重ね、sigmoidでスコアリングするのが、BERTSUMEXT, Abstractiveの場合は6-layerのTransformer decoderを利用するが、これはスクラッチでfinetuninigさせる。このとき、encoder側はoverfit, decoder側はunderfitすることが予想されるため、encoderとdecodeで異なるwarmup, 学習率を適用する。具体的には、encoder側はより小さい学習率で、さらにsmoothに減衰するようにする。これにより、decoder側が安定したときにより正確な勾配で学習できるようになる。また、2-stageのfinetuningを提案し、まずencoder側をextractifve summarization taskでfinetuningし、その後abstractive summarizationでfinetuningする。先行研究ではextractive summarizationのobjectiveを取り入れることでabstractive summarizationの性能が向上していることが報告されており、この知見を取り入れる。今回はextractive summarizationの重みをabstractive taskにtrasnferすることになる。

image

#Pocket #NLP #Evaluation Issue Date: 2023-08-16 Neural Text Summarization: A Critical Evaluation, Krysciski+ (w_ Richard Socher), EMNLP-IJCNLP'19 Summaryテキスト要約の研究は進展が停滞しており、データセット、評価指標、モデルの3つの要素に問題があることが指摘されている。自動収集されたデータセットは制約が不十分であり、ノイズを含んでいる可能性がある。評価プロトコルは人間の判断と相関が弱く、重要な特性を考慮していない。モデルはデータセットのバイアスに過適合し、出力の多様性が限られている。 #Metrics #NLP #Evaluation #QA-based Issue Date: 2023-08-16 Question answering as an automatic evaluation metric for news article summarization, Eyal+, NAACL'19 Summary最近の自動要約の研究では、ROUGEスコアの最大化に焦点を当てているが、本研究では代替的な評価指標であるAPESを提案する。APESは、要約が一連の手動作成質問に答える能力を定量化する。APESを最大化するエンドツーエンドのニューラル抽象モデルを提案し、ROUGEスコアを向上させる。 CommentAPES #Metrics #NLP #Evaluation Issue Date: 2023-08-16 Studying Summarization Evaluation Metrics in the Appropriate Scoring Range, Peyrard+, ACL'19 Summary自動評価メトリックは通常、人間の判断との相関性を基準に比較されるが、既存の人間の判断データセットは限られている。現代のシステムはこれらのデータセット上で高スコアを出すが、評価メトリックの結果は異なる。高スコアの要約に対する人間の判断を収集することで、メトリックの信頼性を解決することができる。これは要約システムとメトリックの改善に役立つ。 Comment要約のメトリックがhuman judgmentsに対してcorrelationが低いことを指摘 #NaturalLanguageGeneration #Pocket #NLP Issue Date: 2023-08-13 HighRES: Highlight-based Reference-less Evaluation of Summarization, Hardy+, N_A, ACL'19 Summary要約の手動評価は一貫性がなく困難なため、新しい手法であるHighRESを提案する。この手法では、要約はソースドキュメントと比較して複数のアノテーターによって評価され、ソースドキュメントでは重要な内容がハイライトされる。HighRESはアノテーター間の一致度を向上させ、システム間の違いを強調することができることを示した。 Comment人手評価の枠組み #MachineTranslation #NLP #Evaluation #TrainedMetrics Issue Date: 2023-08-13 Machine Translation Evaluation with BERT Regressor, Hiroki Shimanaka+, N_A, arXiv'19 Summary私たちは、BERTを使用した自動的な機械翻訳の評価メトリックを紹介します。実験結果は、私たちのメトリックがすべての英語対応言語ペアで最先端のパフォーマンスを達成していることを示しています。 #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance, Zhao+, EMNLP-IJCNLP'19 Summary本研究では、テキスト生成システムの評価尺度について調査し、システムの出力と参照テキストの意味に基づいて比較する尺度を提案します。この尺度は、要約、機械翻訳、画像キャプション、データからテキストへの生成などのタスクで有効であり、文脈化表現と距離尺度を組み合わせたものが最も優れています。また、提案した尺度は強力な汎化能力を持っており、ウェブサービスとして提供されています。 CommentWord Mover Distance (WMD)の解説: https://yubessy.hatenablog.com/entry/2017/01/10/122737 #NLP #Evaluation #Reference-free #QA-based Issue Date: 2023-08-13 Answers Unite Unsupervised Metrics for Reinforced Summarization Models, Scialom+, EMNLP-IJCNLP'19 Summary最近、再強化学習(RL)を使用した抽象的要約手法が提案されており、従来の尤度最大化を克服するために使用されています。この手法は、複雑で微分不可能なメトリクスを考慮することで、生成された要約の品質と関連性を総合的に評価することができます。ROUGEという従来の要約メトリクスにはいくつかの問題があり、代替的な評価尺度を探求する必要があります。報告された人間評価の分析によると、質問応答に基づく提案されたメトリクスはROUGEよりも有利であり、参照要約を必要としないという特徴も持っています。これらのメトリクスを使用してRLベースのモデルをトレーニングすることは、現在の手法に比べて改善をもたらします。 CommentSummaQA #PersonalizedDocumentSummarization #NLP #Personalization Issue Date: 2023-05-08 Towards Personalized Review Summarization via User-Aware Sequence Network, Li+, AAAI'19 Comment同じレビューに対しても、異なるユーザは異なるSumamryを生成するよね、というところがモチベーションとなり、Personalized Review Summarizationを提案。初めてPersonalizationの問題について提案した研究。

image

user embeddingによってユーザ情報を埋め込む方法と、user vocabulary memoryによって、ユーザが好むvocabularyを積極的にsummaryに利用できるようなモジュールの2種類をモデルに導入している

image



Trip advisorのレビューデータを収集。レビューのtitleをreference summaryとみなしてデータセット生成。ただタイトルを利用するだけだと、無意味なタイトルが多く含まれているでフィルタリングしている。

image



Trip Advisorはクローリングを禁止していた気がするので、割とアウトなのでは。

あと、各レビューをランダムにsplitしてtrain/dev/testを作成したと言っているが、本当にそれでいいの?user-stratifiedなsplitをした方が良いと思う。



PGN 135 やlead-1と比較した結果、ROUGEの観点で高い性能を達成

image



また人手評価として、ユーザのgold summaryに含まれるaspectと、generated summaryに含まれるaspectがどれだけ一致しているか、1000件のreviewとtest setからサンプリングして2人の学生にアノテーションしてもらった。結果的に提案手法が最もよかったが、アノテーションプロセスの具体性が薄すぎる。2人の学生のアノテーションのカッパ係数すら書かれていない。

image



case studyとしてあるユーザのレビュと生成例をのせている。userBの過去のレビューを見たら、room, locationに言及しているものが大半であり、このアスペクトをきちんと含められているよね、ということを主張している。

image

#NLP #review Issue Date: 2023-05-06 Neural Review Summarization Leveraging User and Product Information, Liu+, CIKM'19 #Metrics #Pocket #NLP #Evaluation #QA-based Issue Date: 2023-08-16 A Semantic QA-Based Approach for Text Summarization Evaluation, Ping Chen+, N_A, AAAI'18 Summary自然言語処理システムの評価における問題の一つは、2つのテキストパッセージの内容の違いを特定することです。本研究では、1つのテキストパッセージを小さな知識ベースとして扱い、多数の質問を投げかけて内容を比較する方法を提案します。実験結果は有望であり、2007年のDUC要約コーパスを使用して行われました。 CommentQGQAを提案した研究 #NLP #Dataset #NAACL Issue Date: 2018-06-29 Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies, Max+, NAACL'18 Comment文書要約に使用可能なデータセット

38の出版元からデータを収集し、サイズは1.3M article程度

既存のデータセットと比較すると、Coverageが高く生成的なものを多く含むことが特徴

詳細は:https://summari.es
#Supervised #Pocket #NLP #Abstractive #ICLR Issue Date: 2017-12-31 A Deep Reinforced Model for Abstractive Summarization, Paulus+(with Socher), ICLR'18 #Multi #Document #Pocket #NLP #VariationalAutoEncoder #AAAI Issue Date: 2018-10-05 Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization, Li+, AAAI'17 #NeuralNetwork #Document #Supervised #Pocket #NLP #ACL Issue Date: 2018-01-01 Coarse-to-Fine Attention Models for Document Summarization, Ling+ (with Rush), ACL'17 Workshop on New Frontiers in Summarization #Metrics #NLP #EMNLP Issue Date: 2018-01-01 Why We Need New Evaluation Metrics for NLG, Novikova+, EMNLP'17 Comment解説スライド:https://www.dropbox.com/s/7o8v64nr6gyj065/20170915_SNLP2017_Nishikawa.pptx?dl=0言語生成の評価指標が信用ならないので、3種類の生成器、3種類のデータを用意し、多数の自動評価尺度を利用した評価結果と人手評価の結果を比較した結果、相関がなかった。



既存の自動評価は人手評価と弱い相関しかなく、その有効性はデータとドメインに依存。

システム間の比較およびシステムの性能が低い場合においては有効。



(2025.05.12)
解説スライド中のスライドが複数掲載されていましたが削除しました。
#Single #NeuralNetwork #Document #Supervised #NLP #Abstractive #ACL #Admin'sPick Issue Date: 2017-12-31 Get To The Point: Summarization with Pointer-Generator Networks, See+, ACL'17 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/get-to-the-point-summarization-with-pointergenerator-networks/1単語の生成と単語のコピーの両方を行えるハイブリッドなニューラル文書要約モデルを提案。

同じ単語の繰り返し現象(repetition)をなくすために、Coverage Mechanismも導入した。



136 などと比較するとシンプルなモデル。一般的に、PointerGeneratorと呼ばれる。

OpenNMTなどにも実装されている: https://opennmt.net/OpenNMT-py/_modules/onmt/modules/copy_generator.html(参考)Pointer Generator Networksで要約してみる:

https://qiita.com/knok/items/9a74430b279e522d5b93
#NeuralNetwork #Supervised #Pocket #NLP #Abstractive #EACL Issue Date: 2017-12-31 Cutting-off redundant repeating generations for neural abstractive summarization, Suzuki+, EACL'17 #Multi #NeuralNetwork #Document #Supervised #GraphBased #NLP #GraphConvolutionalNetwork #Extractive #CoNLL Issue Date: 2017-12-31 Graph-based Neural Multi-Document Summarization, Yasunaga+, CoNLL'17 CommentGraph Convolutional Network (GCN)を使って、MDSやりましたという話。 既存のニューラルなMDSモデル [Cao et al., 2015, 2017] では、sentence間のrelationが考慮できていなかったが、GCN使って考慮した。 また、MDSの学習データはニューラルなモデルを学習するには小さすぎるが(abstractiveにするのは厳しいという話だと思われる?)、sentenceのsalienceを求める問題に帰着させることで、これを克服。



GCNで用いるAdjacent Matrixとして3種類の方法(cosine similarity, G-Flow, PDG)を試し、議論をしている。PDGが提案手法だが、G-Flowによる重みをPersonalization Features(position, leadか否か等のベーシックな素性)から求まるweightで、よりsentenceのsalienceを求める際にリッチな情報を扱えるように補正している。PDGを用いた場合が(ROUGE的な観点で)最も性能がよかった。



モデルの処理の流れとしては、Document Cluster中の各sentenceのhidden stateをGRUベースなRNNでエンコードし、それをGCNのノードの初期値として利用する。GCNでL回のpropagation後(実験では3回)に得られたノードのhidden stateを、salienceスコア計算に用いるsentence embedding、およびcluster embeddingの生成に用いる。 cluster embeddingは、document clusterをglobalな視点から見て、salienceスコアに反映させるために用いられる。 最終的にこれら2つの情報をlinearなlayerにかけてsoftmaxかけて正規化して、salienceスコアとする。



要約を生成する際はgreedyな方法を用いており、salienceスコアの高いsentenceから要約長に達するまで選択していく。このとき、冗長性を排除するため、candidateとなるsentenceと生成中の要約とのcosine similarityが0.5を超えるものは選択しないといった、よくある操作を行なっている。



DUC01, 02のデータをtraining data, DUC03 をvalidation data, DUC04をtest dataとし、ROUGE1,2で評価。 評価の結果、CLASSY04(DUC04のbest system)やLexRank等のよく使われるベースラインをoutperform。 ただ、regression basedなRegSumにはスコアで勝てないという結果に。 RegSumはwordレベルでsalienceスコアをregressionする手法で、リッチな情報を結構使っているので、これらを提案手法に組み合わせるのは有望な方向性だと議論している。



[Cao+, 2015] Ranking with recursive neural networks and its application to multi-document summarization, Cao+, AAAI'15 [Cao+, 2017] Improving multi-document summarization via text classification, Cao+, AAAI'17



[所感]

・ニューラルなモデルは表現力は高そうだけど、学習データがDUC01と02だけだと、データが足りなくて持ち前の表現力が活かせていないのではないかという気がする。

・冗長性の排除をアドホックにやっているので、モデルにうまく組み込めないかなという印象(distraction機構とか使えばいいのかもしれん)

・ROUGEでしか評価してないけど、実際のoutputはどんな感じなのかちょっと見てみたい。(ハイレベルなシステムだとROUGEスコア上がっても人手評価との相関がないっていう研究成果もあるし。)

・GCN、あまり知らなかったかけど数式追ったらなんとなく分かったと思われる。(元論文読めという話だが)
#Survey #NLP Issue Date: 2017-12-31 Recent Advances in Document Summarization, Yao+, Knowledge and Information Systems'17 #MachineTranslation #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Coherence Issue Date: 2023-08-13 Lexical Coherence Graph Modeling Using Word Embeddings, Mesgar+, NAACL'16 Comment__translate: Coherence is established by semantic connections between sentences of a text which can be modeled by lexical relations. In this paper, we introduce the lexical coherence graph (LCG), a new graph-based model to represent lexical relations among sentences. The frequency of subgraphs (coherence patterns) of this graph captures the connectivity style of sentence nodes in this graph. The coherence of a text is encoded by a vector of these frequencies. We evaluate the LCG model on the readability ranking task. The results of the experiments show that the LCG model obtains higher accuracy than state-of-the-art coherence models. Using larger subgraphs yields higher accuracy, because they capture more structural information. However, larger subgraphs can be sparse. We adapt Kneser-Ney smoothing to smooth subgraphs’ frequencies. Smoothing improves performance. #NeuralNetwork #NaturalLanguageGeneration #Pocket #NLP Issue Date: 2018-10-06 Neural Headline Generation with Minimum Risk Training, Ayana+, N_A, arXiv'16 Summary自動見出し生成のために、最小リスクトレーニング戦略を使用してモデルパラメータを最適化し、見出し生成の改善を実現する。提案手法は英語と中国語の見出し生成タスクで最先端のシステムを上回る性能を示す。 #Single #Document #DomainAdaptation #Supervised #NLP #Extractive #PRICAI Issue Date: 2018-01-01 Learning from Numerous Untailored Summaries, Kikuchi+, PRICAI'16 CommentNew York Times Annotated Corpus(NYTAC)に含まれる大量の正解要約データを利用する方法を提案。

NYTACには650,000程度の人手で生成された参照要約が付与されているが、このデータを要約の訓練データとして活用した事例はまだ存在しないので、やりましたという話。



具体的には、NYTACに存在する人手要約を全てそのまま使うのではなく、Extracitiveなモデルの学習に効果的な事例をフィルタリングして選別する手法を提案

また、domain-adaptationの技術を応用し、NYTACデータを要約を適用したいtargetのテキストに適応する5つの手法を提案



モデルとしては、基本的にknapsack問題に基づいた要約モデル(Extractive)を用い、学習手法としてはPassive Aggressiveアルゴリズムの構造学習版を利用する。

NYTACのデータを活用する手法として、以下の5つの手法を提案している。



```

1. NytOnly: NYTACのデータのみで学習を行い、target側の情報は用いない

2. Mixture: targetとNYTACの事例をマージして一緒に学習する

3. LinInter: TrgtOnly(targetデータのみで学習した場合)のweightとNytOnlyで学習したweightをlinear-interpolationする。interpolation parameterはdev setから決定

4. Featurize: NytOnlyのoutputをtargetでモデルを学習する際の追加の素性として用いる

5. FineTune: NytOnlyで学習したweightを初期値として、target側のデータでweightをfinetuneする

```



また、NYTACに含まれる参照要約には、生成的なものや、メタ視点から記述された要約など、様々なタイプの要約が存在する。今回学習したいモデルはExtractiveな要約モデルなので、このような要約は学習事例としては適切ではないのでフィルタリングしたい。

そこで、原文書からExtractiveな要約を生成した際のOracle ROUGE-2スコアを各参照要約-原文書対ごとに求め、特定の閾値以下の事例は使用しないように、インスタンスの選択を行うようにする。



DUC2002 (単一文書要約タスク)、RSTDTBlong, RSTDTBshort (Rhetrical Structure Theory Discourse Tree Bankに含まれる400件程度の(確か社説のデータに関する)要約)の3種類のデータで評価。



どちらの評価においても、FineTuneを行い、インスタンスの選択を行うようにした場合が提案手法の中ではもっとも性能がよかった。

DUC2002では、LEADやTextRankなどの手法を有意にoutperformしたが、DUC2002のbest systemには勝てなかった。

しかしながら、RSTDTBlongにおける評価では、RSTの情報などを用いるstate-of-the-artなシステムに、RSTの情報などを用いない提案手法がROUGEスコアでoutperformした。

RSTDTBshortにおける評価では、RSTを用いる手法(平尾さんの手法)には及ばなかったが、それ以外ではbestな性能。これは、RSTDTBshortの場合は要約が指示的な要約であるため、今回学習に用いた要約のデータやモデルは報知的な要約のためのものであるため、あまりうまくいかなかったと考察している。
#Single #NeuralNetwork #Document #Supervised #NLP #Abstractive #ACL #Admin'sPick Issue Date: 2017-12-31 Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu+, ACL'16 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/incorporating-copying-mechanism-in-sequene-to-sequence-learning単語のコピーと生成、両方を行えるネットワークを提案。

location based addressingなどによって、生成された単語がsourceに含まれていた場合などに、copy-mode, generate-modeを切り替えるような仕組みになっている。



65 と同じタイミングで発表
#Single #NeuralNetwork #Document #Supervised #NLP #Abstractive #IJCAI Issue Date: 2017-12-31 Distraction-Based Neural Networks for Modeling Documents, Chen+, IJCAI'16 CommentNeuralなモデルで「文書」の要約を行う研究。



提案手法では、attention-basedなsequence-to-sequenceモデルにdistractionと呼ばれる機構を導入することを提案。



distractionを導入するmotivationは、入力文書中の異なる情報を横断的に参照(一度着目した情報には今後あまり着目しないようなバイアスをかける)したうえで、要約を生成しようというもの。

これにより、生成される要約の冗長性を排除するのが狙い。



以下の3つのアプローチを用いて、distractionを実現



1. [Distraction over input content vectors]

 tステップ目において、decoderのinputとして用いるcontext vectorを

計算する際に、通常の計算に加えて、t-1ステップ目までに使用した

context vectorの情報を活用することで、これまでdecoderのinputとして

利用された情報をあまり重視視しないように、context vectorを生成する。



2. [Distraction over attention weight vectors]

 attentionの重みを計算する際に、過去に高いattentionの重みがついた

encoderのhidden stateについては、あまり重要視しないように

attentionの重みを計算。1と同様に、t-1ステップ目までのattention weightの

historyを保持しておき活用する。



3. [Distration in decoding]

 decodingステップでbeam-searchを行う際のスコア計算に、distraction scoreを導入。distraction

scoreはtステップ目までに用いられたcontext vector、attention

weight、decoderのstateから計算され、これまでと同じような情報に基づいて

単語が生成された場合は、スコアが低くなるようになっている。



CNN、およびLCSTS data (大規模な中国語のheadline generationデータ)で評価した結果、上記3つのdistraction機構を導入した場合に、最も高いROUGEスコアを獲得



特に、原文書が長い場合に、短い場合と比較して、distraction機構を導入すると、

ROUGEスコアの改善幅が大きくなったことが示されている
#Single #NeuralNetwork #Document #Supervised #NLP #Extractive #ACL Issue Date: 2017-12-31 Neural Summarization by Extracting Sentences and Words, Cheng+, ACL'16 CommentExtractiveかつNeuralな単一文書要約ならベースラインとして使用した方がよいかも #NeuralNetwork #Document #Supervised #NLP #Abstractive #IJCAI Issue Date: 2017-12-28 Distraction-Based Neural Networks for Modeling Documents, Chen+, IJCAI'16 CommentNeuralなモデルで「文書」の要約を行う研究。



提案手法では、attention-basedなsequence-to-sequenceモデルにdistractionと呼ばれる機構を導入することを提案。



distractionを導入するmotivationは、入力文書中の異なる情報を横断的に参照(一度着目した情報には今後あまり着目しないようなバイアスをかける)したうえで、要約を生成しようというもの。

これにより、生成される要約の冗長性を排除するのが狙い。



以下の3つのアプローチを用いて、distractionを実現



1. [Distraction over input content vectors]

 tステップ目において、decoderのinputとして用いるcontext vectorを

計算する際に、通常の計算に加えて、t-1ステップ目までに使用した

context vectorの情報を活用することで、これまでdecoderのinputとして

利用された情報をあまり重視視しないように、context vectorを生成する。



2. [Distraction over attention weight vectors]

 attentionの重みを計算する際に、過去に高いattentionの重みがついた

encoderのhidden stateについては、あまり重要視しないように

attentionの重みを計算。1と同様に、t-1ステップ目までのattention weightの

historyを保持しておき活用する。



3. [Distration in decoding]

 decodingステップでbeam-searchを行う際のスコア計算に、distraction scoreを導入。distraction

scoreはtステップ目までに用いられたcontext vector、attention

weight、decoderのstateから計算され、これまでと同じような情報に基づいて

単語が生成された場合は、スコアが低くなるようになっている。



CNN、およびLCSTS data (大規模な中国語のheadline generationデータ)で評価した結果、上記3つのdistraction機構を導入した場合に、最も高いROUGEスコアを獲得



特に、原文書が長い場合に、短い場合と比較して、distraction機構を導入すると、

ROUGEスコアの改善幅が大きくなったことが示されているDistraction機構の有用性は、ACL'17のstanford NLPグループが提案したPointer Generator Networkでも示されている(Coverage Vectorという呼び方をしてた気がする)
#MachineTranslation #NaturalLanguageGeneration #Metrics #NLP #Reference-based Issue Date: 2023-08-13 chrF: character n-gram F-score for automatic MT evaluation, Mono Popovic, WMT'15 Summary私たちは、機械翻訳の評価に文字n-gram Fスコアを使用することを提案します。私たちは、このメトリックがシステムレベルとセグメントレベルで人間のランキングと相関しており、特にセグメントレベルでの相関が非常に高いことを報告しました。この提案は非常に有望であり、WMT14の共有評価タスクでも最高のメトリックを上回りました。 Commentcharacter-basedなn-gram overlapをreferenceとシステムで計算する手法 #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 From word embeddings to document distances, Kusner+, PMLR'15 Summary私たちは、新しい距離関数であるWord Mover's Distance(WMD)を提案しました。WMDは、テキストドキュメント間の非類似性を測定するために使用されます。私たちの研究では、単語埋め込みの最新の結果に基づいてWMDを開発しました。WMDは、単語が別のドキュメントの単語に到達するために必要な最小距離を計算します。私たちのメトリックは、実装が簡単であり、ハイパーパラメータも必要ありません。さらに、私たちは8つの実世界のドキュメント分類データセットでWMDメトリックを評価し、低いエラーレートを示しました。 CommentWMS/SMS/S+WMS

946 はこれらからinspiredされ提案された
#ComputerVision #NaturalLanguageGeneration #Pocket #NLP #Evaluation #ImageCaptioning #Reference-based Issue Date: 2023-05-10 CIDEr: Consensus-based Image Description Evaluation, Ramakrishna Vedantam+, N_A, CVPR'15 Summary画像を文章で自動的に説明することは、長年の課題である。本研究では、人間の合意を利用した画像説明の評価のための新しいパラダイムを提案し、新しい自動評価指標と2つの新しいデータセットを含む。提案手法は、人間の判断をより正確に捉えることができ、5つの最先端の画像説明手法を評価し、将来の比較のためのベンチマークを提供する。CIDEr-Dは、MS COCO評価サーバーの一部として利用可能であり、システマティックな評価とベンチマークを可能にする。 #Metrics #NLP #EMNLP Issue Date: 2018-01-01 Re-evaluating Automatic Summarization with BLEU and 192 Shades of ROUGE, Graham, EMNLP'15 Comment文書要約で使用されているMetric、特にBLEUやROUGEの結果(可能な192のパターン)と、人手の結果との相関を再分析している。

その結果、BLEUがもっとも人手評価との相関が高く、ROUGE-2のPrecisionの平均(ステミング、stop words除去)がROUGEの中でbest-performingなvariantだった。



要約のMetrcの最適な検定方法として、Williams検定を利用。

再評価の結果、以前推奨されていたvariantとは異なるMetricsが良い結果に。

best-performing ROUGE resultを用いて、既存のstate-of-the-artなシステムを再度ランキングづけすると、originalのものとは結構異なる結果になった。



(一部のスコアが良かったシステムのスコアが相対的にかなり悪化している)

image



また、BLEUが人手評価ともっとも高い相関を示したが、best-performingなROUGE variantとは統計的な有意差はなかった。
#NeuralNetwork #Sentence #Supervised #NLP #Abstractive #EMNLP #Admin'sPick Issue Date: 2017-12-31 A Neural Attention Model for Sentence Summarization, Rush+, EMNLP'15 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/a-neural-attention-model-for-sentence-summarization-65612331 #Single #NeuralNetwork #Sentence #Document #NLP #Dataset #Abstractive #EMNLP #Admin'sPick Issue Date: 2017-12-28 LCSTS: A large scale chinese short text summarizatino dataset, Hu+, EMNLP'15 CommentLarge Chinese Short Text Summarization (LCSTS) datasetを作成



データセットを作成する際は、Weibo上の特定のorganizationの投稿の特徴を利用。

Weiboにニュースを投稿する際に、投稿の冒頭にニュースのvery short summaryがまず記載され、その後ニュース本文(短め)が記載される特徴があるので、この対をsource-reference対として収集した。

収集する際には、約100個のルールに基づくフィルタリングやclearning, 抽出等を行なっている。



image



データセットのpropertyとしては、下記のPartI, II, IIIに分かれている。



PartI: 2.4Mのshort text ・summary pair

PartII: PartIからランダムにサンプリングされた10kのpairに対して、5 scaleで要約のrelevanceをratingしたデータ。ただし、各pairにラベルづけをしたevaluatorは1名のみ。

PartIII: 2kのpairに対して(PartI, PartIIとは独立)、3名のevaluatorが5-scaleでrating。evaluatorのratingが一致した1kのpairを抽出したデータ。



image



RNN-GRUを用いたSummarizerも提案している。



image



CopyNetなどはLCSTSを使って評価している。他にも使ってる論文あったはず。ACL'17のPointer Generator Networkでした。
#NeuralNetwork #Sentence #NLP #EMNLP #Admin'sPick Issue Date: 2017-12-28 Sentence Compression by Deletion with LSTMs, Fillipova+, EMNLP'15 Commentslide:https://www.slideshare.net/akihikowatanabe3110/sentence-compression-by-deletion-with-lstms #NLP #review Issue Date: 2023-05-08 Empirical analysis of exploiting review helpfulness for extractive summarization of online reviews, Xiong+, COLING'14 Commentレビューのhelpfulnessを利用したunsupervisedなreview summarization手法を提案。helpfulessによりレビューをフィルタリングするだけでなく、トピックモデルでsentenceをクラスタリングする際にhelpfulnessの情報も活用している模様。



最終的にはユーザスタディで評価。ユーザがカメラを購入するためにレビューを読むシナリオを想定。ユーザにまずは10 sentenceでレビューを作成してもらう。その上で、3つの要約手法による要約を提示し、どれが「カメラを購入するdecision makingに役立ったか?またはinformativeだったか?」で評価してもらっている。
#Others #NLP #AAAI Issue Date: 2018-01-01 Detecting information-dense texts in multiple news domains, Yang+, AAAI'14 Commentニュース記事の第一段落目がinformativeか否か(重要なfactual informationが記述されているか否か)を分類する研究。

New York Times Annotated Corpusに対して、自動的にinformative, non-informativeなラベルづけを行う手法を提案し、分類モデルをtraining。



(informativeな例)

image



(non-informativeな例)

image



評価の結果、Accuracyはだいたい0.8〜0.85くらい。



人が100件中何件をinformativeと判断したかが下表。下表を見ると、リードにもnon-informativeなものが多数存在することがわかる。

また、ドメインによって傾向が異なっており、たとえばスポーツドメインでは、entertaining mannerで記述されるのでfactual informationがあまり記述されない傾向にあったり、Scienceドメインでは、generalなtopicやissue, personal historyなどが記述される傾向にあるので、相対的にinformativeなLeadが少ない。

image

#Multi #Single #Document #Unsupervised #GraphBased #NLP #Extractive #SIGIR Issue Date: 2018-01-01 CTSUM: Extracting More Certain Summaries for News Articles, Wan+, SIGIR'14 Comment要約を生成する際に、情報の”確実性”を考慮したモデルCTSUMを提案しましたという論文(今まではそういう研究はなかった)



```

"However, it seems that Obama will not use the platform to relaunch his stalled drive for Israeli-Palestinian peace"

```

こういう文は、"It seems"とあるように、情報の確実性が低いので要約には入れたくないという気持ち。



FactBankのニュースコーパスから1000 sentenceを抽出し、5-scaleでsentenceの確実性をラベルづけ。

このデータを用いてSVRを学習し、sentenceの確実性をoutputする分類器を構築

affinity-propagationベース(textrank, lexrankのような手法)手法のaffinityの計算(edge間の重みのこと。普通はsentence同士の類似度とかが使われる)を行う際に、情報の確実性のスコアを導入することで確実性を考慮した要約を生成



DUC2007のMDSデータセットで、affinity計算の際に確実性を導入する部分をablationしたモデル(GRSUM)と比較したところ、CTSUMのROUGEスコアが向上した。

また、自動・人手評価により、生成された要約に含まれる情報の確実性を評価したところ、GRSUMをoutperformした解説スライド:https://www.slideshare.net/akihikowatanabe3110/ctsum-extracting-more-certain-summaries-for-news-articlesSIGIRでは珍しい、要約に関する研究

情報の確実性を考慮するという、いままであまりやられていなかった部分にフォーカスしたのはおもしろい

「アイデアはおもしろいし良い研究だが、affinity weightが変化するということは、裏を返せばdamping factorを変更してもそういう操作はできるので、certaintyを考慮したことに意味があったのかが完全に示せていない。」という意見があり、なるほどと思った。
#Single #Document #Supervised #NLP #Abstractive #Extractive #COLING Issue Date: 2018-01-01 Learning to Generate Coherent Sumamry with Discriminative Hidden Semi-Markov Model, Nishikawa+, COLING'14 CommentHidden-semi-markovモデルを用いた単一文書要約手法を提案。



通常のHMMでは一つの隠れ状態に一つのunit(要約の文脈だと文?)が対応するが、hidden-semi-markov(HSMM)モデルでは複数のunitを対応づけることが可能。

隠れ状態に対応するunitを文だと考えると、ある文の複数の亜種を考慮できるようになるため、ナップサック制約を満たしつつ最適な文の亜種を選択するといったことが可能となる。

とかまあ色々難しいことが前半の節に書いてある気がするが、3.3節を見るのがわかりやすいかもしれない。



定式化を見ると、基本的なナップサック問題による要約の定式化に、Coherenceを表すtermと文の変種を考慮するような変数が導入されているだけである。

文のweightや、coherenceのweightは構造学習で学習し、Passive Aggressiveを用いて、loss functionとしてはROUGEを用いている(要はROUGEが高くなるように、outputの要約全体を考慮しながら、weightを学習するということ)。



文の変種としては、各文を文圧縮したものを用意している。

また、動的計画法によるデコーディングのアルゴリズムも提案されている。



構造学習を行う際には大量の教師データが必要となるが、13,000記事分のニュース記事と対応する人手での要約のデータを用いて学習と評価を行なっており、当時これほど大規模なデータで実験した研究はなかった。



ROUGEでの評価の結果、文の変種(文圧縮)を考慮するモデルがベースラインを上回る結果を示したが、LEADとは統計的には有意差なし。しかしながら、人手で生成した要約との完全一致率が提案手法の方が高い。

また、ROUGEの評価だけでなく、linguistic quality(grammaticality, structure/coherenceなど)を人手で評価した結果、ベースラインを有意にoutperform。LEADはgrammaticalityでかなり悪い評価になっていて、これは要約を生成すると部分文が入ってしまうため。

訓練事例数を変化させてROUGEスコアに関するlearning curveを描いた結果、訓練事例の増加に対してROUGEスコアも単調増加しており、まだサチる気配を見せていないので、事例数増加させたらまだ性能よくなりそうという主張もしている。評価に使用した記事が報道記事だったとするならば、quality的にはLeadに勝ってそうな雰囲気を感じるので、結構すごい気はする(単一文書要約で報道記事においてLEADは最強感あったし)。

ただ、要約の評価においてinformativenessを評価していないので、ROUGEスコア的にはLeadとcomparableでも、実際に生成される要約の情報量として果たしてLEADに勝っているのか興味がある。
#Multi #NLP #Extractive #ACL #Admin'sPick Issue Date: 2017-12-28 Hierarchical Summarization: Scaling Up Multi-Document Summarization, Christensen+, ACL'14 Comment概要

だいぶ前に読んだ。好きな研究。

テキストのsentenceを階層的にクラスタリングすることで、抽象度が高い情報から、関連する具体度の高いsentenceにdrill downしていけるInteractiveな要約を提案している。



手法

通常のMDSでのデータセットの規模よりも、実際にMDSを使う際にはさらに大きな規模のデータを扱わなければならないことを指摘し(たとえばNew York Timesで特定のワードでイベントを検索すると数千、数万件の記事がヒットしたりする)そのために必要な事項を検討。

これを実現するために、階層的なクラスタリングベースのアプローチを提案。

提案手法では、テキストのsentenceを階層的にクラスタリングし、下位の層に行くほどより具体的な情報になるようにsentenceを表現。さらに、上位、下位のsentence間にはエッジが張られており、下位に紐付けられたsentence

は上位に紐付けられたsentenceの情報をより具体的に述べたものとなっている。

これを活用することで、drill down型のInteractiveな要約を実現。
#Multi #NLP #Dataset #QueryBiased #Extractive #ACL #Admin'sPick Issue Date: 2017-12-28 Query-Chain Focused Summarization, Baumel+, ACL'14 Comment(管理人が作成した過去の紹介資料)
[Query-Chain Focused Summarization.pdf](https://github.com/AkihikoWatanabe/paper_notes/files/1590916/Query-Chain.Focused.Summarization.pdf)

上記スライドは私が当時作成した論文紹介スライドです。スライド中のスクショは説明のために論文中のものを引用しています。
#NLP #Evaluation Issue Date: 2023-08-23 Automatically Assessing Machine Summary Content Without a Gold Standard, Louis+(w_ Nenkova), ACL'13 Summary本研究では、要約の評価において新しい技術を提案しています。これにより、人間の要約が利用できない場合や、単一のモデルしか利用できない場合でも正確な評価が可能となります。具体的には、モデルに依存しない評価技術や、システム要約の類似性を定量化する尺度などを提案しています。これにより、要約の評価を人間の評価と正確に再現することができます。また、擬似モデルを導入することで、利用可能なモデルのみを使用する場合よりも人間の判断との相関が高くなることも示しています。さらに、システム要約のランキング方法についても探求しており、驚くほど正確なランキングが可能となります。 Commentメタ評価の具体的な手順について知りたければこの研究を読むべし #MachineTranslation #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Coherence Issue Date: 2023-08-13 Graph-based Local Coherence Modeling, Guinaudeau+, ACL'13 Summary私たちは、グラフベースのアプローチを提案し、文の順序付け、要約の結束性評価、読みやすさの評価の3つのタスクでシステムを評価しました。このアプローチは、エンティティグリッドベースのアプローチと同等の性能を持ち、計算コストの高いトレーニングフェーズやデータのまばらさの問題にも対処できます。 #Pocket #NLP #Evaluation #CrossLingual Issue Date: 2023-08-13 Evaluating the Efficacy of Summarization Evaluation across Languages, Koto+ (w_ Tim先生), Findings of ACL'12 Summaryこの研究では、異なる言語の要約コーパスを使用して、マルチリンガルBERTを用いたBERTScoreが他の要約評価メトリックスよりも優れたパフォーマンスを示すことが示されました。これは、英語以外の言語においても有効であることを示しています。 #MachineTranslation #NaturalLanguageGeneration #Metrics #NLP #Evaluation #Coherence Issue Date: 2023-08-13 Extending Machine Translation Evaluation Metrics with Lexical Cohesion to Document Level, Wong+, EMNLP'12 Summaryこの論文では、語彙的な結束を利用して文書レベルの機械翻訳の評価を容易にする方法を提案しています。語彙的な結束は、同じ意味を持つ単語を使って文を結びつけることで、テキストの結束性を実現します。実験結果は、この特徴を評価尺度に組み込むことで、人間の判断との相関を向上させることを示しています。 CommentRC-LC #Survey #NLP Issue Date: 2017-12-31 A Survey of Text Summarization Techniques, Nenkova+, Springer'12 #NLP #Evaluation #QA-based Issue Date: 2023-08-20 Discourse constraints for document compression, Clarke+ (w_ Lapata), Computational Linguistics'10 CommentQAベースドなアプローチを人手評価に導入した初めての研究 #Metrics #NLP #Evaluation #Reference-free Issue Date: 2023-08-13 ROUGE-C: A fully automated evaluation method for multi-document summarization, He+, International Conference on Granular Computing'08 Summaryこの論文では、ROUGEを使用して要約を評価する方法について説明しています。ROUGEは、要約評価のために広く使用されていますが、手動の参照要約が必要です。この研究では、ROUGE-Cという手法を開発しました。ROUGE-Cは、参照要約を入力情報に置き換えることで、手動の参照要約なしで要約を評価することができます。実験結果は、ROUGE-Cが人間の判断を含む参照要約とよく相関していることを示しています。 #Metrics #NLP #Evaluation #Reference-based #TrainedMetrics Issue Date: 2023-08-14 Supervised automatic evaluation for summarization with voted regression model, Hirao+, Information and Processing & Management'07 Summary要約システムの評価には高品質な人間の評価が必要だが、コストが高いため自動評価方法が必要。提案手法は投票回帰モデル(VRM)を使用し、従来の自動評価方法と比較してエラー削減を達成。さらに、最も高い相関係数を得た。 CommentVRM #Multi #Document #NLP #IntegerLinearProgramming (ILP) #Extractive #ECIR #Admin'sPick Issue Date: 2018-01-17 A study of global inference algorithms in multi-document summarization, Ryan McDonald, ECIR'07 Comment文書要約をナップサック問題として定式化し、厳密解(動的計画法、ILP Formulation)、近似解(Greedy)を求める手法を提案。 #Single #Document #Supervised #NLP #IJCAI Issue Date: 2017-12-31 Document Summarization using Conditional Random Fields, Shen+, IJCAI'07 CommentCRFを用いて単一文書要約の手法を考えましたという話。



気持ちとしては、

```

1. Supervisedなモデルでは、当時は原文書中の各文を独立に2値分類して要約を生成するモデルが多く、sentence間のrelationが考慮できていなかった

2. unsupervisedな手法では、ルールに基づくものなどが多く、汎用的ではなかった

```

といった問題があったので、CRF使ってそれを解決しましたという主張



CRFを使って、要約の問題を系列ラベリング問題に落とすことで、文間の関係性を考慮できるようにし、従来使われてきたルール(素性)をそのままCRFの素性としてぶちこんでしまえば、要約モデル学習できるよねっていうことだろうと思う。



CRFのFeatureとしては、文のpositionや、長さ、文の尤度、thematic wordsなどの基本的なFeatureに加え、LSAやHitsのScoreも利用している。



DUC2001のデータで評価した結果、basicな素性のみを使用した場合、unsupervisedなベースライン(Random, Lead, LSA, HITS)、およびsupervisedなベースライン(NaiveBayes, SVM, Logistic Regression, HMM)をoutperform。

また、LSAやHITSなどのFeatureを追加した場合、basicな素性のみと比べてROUGEスコアが有意に向上し、なおかつ提案手法がbest



結構referされているので、知っておいて損はないかもしれない。
#GraphBased #Comments #NLP #Extractive #CIKM Issue Date: 2017-12-28 Comments-Oriented Blog Summarization by Sentence Extraction, CIKM'07, [Hu+, 2007], 2007.11 #Multi #Classic #NLP Issue Date: 2023-08-27 Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies, Radev+, Information Processing & Management'04 CommentMEAD, Centroid-basedな手法で要約を実施する古典的なMDS手法 #NLP #OpinionMining #review Issue Date: 2023-05-08 Mining and summarizing customer reviews, Hu+, KDD'04 Commentレビュー中のユーザが記述したopinion sentenceを同定し、極性がpos/negのどちらかを判定し、pos/negそれぞれの代表的なsentenceを抽出することで要約する手法



評価をする際は、Amazon等のレビューを収集し、人間がレビューを読み、どれがopinion sentenceか、およびpolarityをタグ付けし、それらをどれだけ抽出できたかをPrecision / Recall / F1値で評価。
#Multi #Document #NLP #Extractive #COLING Issue Date: 2018-01-17 A Formal Model for Information Selection in Multi-Sentence Text Extraction, Filatova+, COLING'04 Comment初めて文書要約を最大被覆問題として定式化した研究。 #NLP #Alignment #EMNLP Issue Date: 2018-01-15 A Phrase-Based HMM Approach to Document_Abstract Alignment, Daume+, EMNLP'04 CommentAbstractsとSource TextのAlignmentをとるために、Phrase-Based HMMを提案。

Ziff-Davis Corpusのテキストに対して、2人のannotatorによってgold standardを作成。

評価においてMTにおけるIBM Model4やHMM basedな単語アライメント手法と比較しているが、fair comparisonのために行なっている施策が参考になる。
#Single #Document #GraphBased #NLP #Extractive #EMNLP #Admin'sPick Issue Date: 2018-01-01 TextRank: Bringing Order into Texts, Mihalcea+, EMNLP'04 CommentPageRankベースの手法で、キーワード抽出/文書要約 を行う手法。

キーワード抽出/文書要約 を行う際には、ノードをそれぞれ 単語/文 で表現する。

ノードで表現されている 単語/文 のsimilarityを測り、ノード間のedgeの重みとすることでAffinity Graphを構築。

あとは構築したAffinity Graphに対してPageRankを適用して、ノードの重要度を求める。

ノードの重要度に従いGreedyに 単語/文 を抽出すれば、キーワード抽出/文書要約 を行うことができる。単一文書要約のベースラインとして使える。gensimに実装がある。

個人的にも実装している:https://github.com/AkihikoWatanabe/textrank
#Document #NLP #NAACL #Admin'sPick Issue Date: 2018-01-21 Cut and paste based text summarization, Jing+, NAACL'00 CommentAbstractiveなSummarizationの先駆け的研究。

AbstractiveなSummarizationを研究するなら、押さえておいたほうが良い。
#NLP #Alignment Issue Date: 2018-01-15 Generating Extraction-Based Summaries from Hand-Written Summaries by Aligning Text Spans, Banko+, PACLING'99 Comment文を単位とし、文を文中の単語の出現頻度ベクトルで表し、ベクトル間の距離で文間の類似度を計ることで自由作成要約中の文と現文中の文をもっとも類似度が大きくなるように対応づける。

(奥村先生のSurveyより:https://www.jstage.jst.go.jp/article/jnlp1994/9/4/9_4_97/_pdf)
#InformationRetrieval #NLP #Search #SIGIR #Admin'sPick Issue Date: 2018-01-17 The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries, Carbonell+, SIGIR'98 CommentMaximal Marginal Relevance (MMR) 論文。

検索エンジンや文書要約において、文書/文のランキングを生成する際に、既に選んだ文書と類似度が低く、かつqueryとrelevantな文書をgreedyに選択していく手法を提案。

ILPによる定式化が提案される以前のMulti Document Summarization (MDS) 研究において、冗長性の排除を行う際には典型的な手法。
#Single #Document #NLP #Extractive Issue Date: 2018-01-01 Automatic condensation of electronic publications by sentence selection, Brandow+, Information Processing & Management'95 Comment報道記事要約において、自動要約システムがLead文に勝つのがhardだということを示した研究 #Document #Supervised #NLP #Extractive #SIGIR Issue Date: 2017-12-31 A Trainable Document Summarizer, Kupiec+, SIGIR'95 #Article #Metrics #NLP #Evaluation #Reference-based Issue Date: 2023-08-13 Learning to Score System Summaries for Better Content Selection Evaluation, Peyard+, Prof. of the Workshop on New Frontiers in Summarization Summary本研究では、古典的な要約データセットを使用して、人間の判断に基づいた自動スコアリングメトリックの学習を提案します。既存のメトリックを組み込み、人間の判断と高い相関を持つ組み合わせを学習します。新しいメトリックの信頼性は手動評価によってテストされます。学習済みのメトリックはオープンソースのツールとして公開されます。 #Article #NeuralNetwork #NaturalLanguageGeneration #NLP #ACL Issue Date: 2021-06-03 Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu+, ACL’16 Comment371 と同様コピーメカニズムを提案した論文。Joint Copy ModelやCOPYNETと呼ばれる。

次の単語が "生成" されるのか "コピー" されるのかをスコアリングし、各単語がコピーされる確率と生成される確率をMixtureした同時確率分布で表現する( 207 等でも説明されている)。

コピーメカニズムを導入せるなら引用すべき。



image



コピーメカニズム部分の説明



image



image



image

image

image

解説資料: http://www.lr.pi.titech.ac.jp/~sasano/acl2016suzukake/slides/08.pdf
#Article #NeuralNetwork #NaturalLanguageGeneration #NLP #ACL Issue Date: 2021-06-02 Pointing the Unknown Words, Gulcehre+, ACL’16 CommentConditional Copy Model (Pointer Softmax)を提案した論文。
単語を生成する際に、語彙内の単語から生成する分布、原文の単語から生成する分布を求める。後者はattention distributionから。コピーするか否かを決める確率変数を導入し(sigmoid)、両生成確率を重み付けする。
コピーメカニズム入れるなら引用すべき。解説スライド:https://www.slideshare.net/hytae/pointing-the-unknown-words
#Article #Document #NLP #Extractive Issue Date: 2018-01-17 Machine-made index for technical literature: an experiment, IBM Journal of Research and Development, 1958. Comment初期の要約研究。Luhnらの研究よりはcitation countが少ない。 #Article #NLP #Alignment #SIGIR #Admin'sPick Issue Date: 2018-01-11 The Decomposition of Human-Written Summary Sentences. Hongyan Jing et al. SIGIR’99. Comment参照要約 ・原文書対が与えられた時に、参照要約中の単語と原文書中の単語のアライメントをとるHMMベースな手法を提案。



image



outputはこんな感じ。
#Article #NLP #Alignment #SIGIR Issue Date: 2018-01-11 The automatic construction of large-scale corpora for summarization research. Daniel Marcu. SIGIR’99 Comment<Abstract, Text>のタプルが与えられた時に、<Abstract, Extract, Text>のタプルを自動的に生成。ExtractはAbstractと対応するText中の重要部(節やsentence)。



<Abstract, Extract, Text>に含まれるExtractの情報を使えば、Extractiveな要約器の学習などに活用できる。
#Article #Multi #Single #Document #Unsupervised #GraphBased #NLP #Extractive #Admin'sPick Issue Date: 2018-01-01 LexRank: Graph-based Lexical Centrality as Salience in Text Summarization, Erkan+, Journal of Artificial Intelligence Research, 2004 Comment代表的なグラフベースな(Multi) Document Summarization手法。

ほぼ 214 と同じ手法。



2種類の手法が提案されている:



[LexRank] tf-idfスコアでsentenceのbag-of-wordsベクトルを作り、cosine similarityを計算し閾値以上となったsentenceの間にのみedgeを張る(重みは確率的に正規化)。その後べき乗法でPageRank。

[ContinousLexRank] tf-idfスコアでsentenceのbag-of-wordsベクトルを作り、cosine similarityを用いてAffinity Graphを計算し、PageRankを適用(べき乗法)。



DUC2003, 2004(MDS)で評価。

Centroidベースドな手法をROUGE-1の観点でoutperform。

document clusterの17%をNoisyなデータにした場合も実験しており、Noisyなデータを追加した場合も性能劣化が少ないことも示している。
#Article #Document #Classic #NLP Issue Date: 2018-01-01 The automatic creation of literature abstracts, Luhn, IBM Journal of Research Development, 1958 Comment文書要約研究初期の研究 #Article #Document #StructuredLearning #DomainAdaptation #Supervised #NLP #Extractive Issue Date: 2017-12-31 転移学習による抽出型要約の精度向上, 西川+, 情報処理学会研究報告, 2011 Comment構造学習を利用した文書要約モデル

126 なども利用し転移学習を行なっている。
#Article #Supervised #NLP Issue Date: 2017-12-31 Text Summarization using a trainable summarizer and latent semantic analysis, Yeh+, Information Processing and Management 2005 #Article #Survey #NLP Issue Date: 2017-12-31 A survey on Automatic Text Summarization, Das+, CMUの教材? #Article #NLP #Snippets #SIGIR Issue Date: 2017-12-28 Web page summarization using clickthrough data, Sun et al., SIGIR’05, 2005 #Article #NLP #Snippets #QueryBiased #CIKM Issue Date: 2017-12-28 Learning query-biased web page summarization, Wang et al., CIKM’07, 2007 Comment・従来のquery-biasedな要約におけるclassificationアプローチは,training内のdocumentの情報が未知のdocumentのsentenceのclassificationに役立つというものだった.これは,たとえば似たような情報を多く含むscientific articleだったら有用だが,様々な情報を含むweb pageにはあまり適切ではない(これはtraining set内のdocumentの情報とtarget pageの情報を比較するみたいなアプローチに相当する).この研究では,target page内の’sentenceの中で’はスニペットに含めるべき文かどうかという比較ができるという仮定のもと,learning to rankを用いてスニペットを生成する.

・query biased summarizationではrelevanceとfidelityの両者が担保された要約が良いとされている.

relevanceとはクエリと要約の適合性,fidelityとは,要約とtarget documentとの対応の良さである.

・素性は,relevanceに関してはクエリとの関連度,fidelityに関しては,target page内のsentenceに関しては文の位置や,文の書式(太字)などの情報を使う.contextの文ではそういった情報が使えないので,タイトルやanchor textのフレーズを用いてfidelityを担保する(詳しくかいてない).あとはterm occurence,titleとextracted title(先行研究によると,TRECデータの33.5%のタイトルが偽物だったというものがあるのでextracted titleも用いる),anchor textの情報を使う.あまり深く読んでいない.

・全ての素性を組み合わせたほうがintrinsicなevaluationにおいて高い評価値.また,contextとcontent両方組み合わせたほうが良い結果がでた.
#Article #NLP #Snippets Issue Date: 2017-12-28 Enhanced web document summarization using hyperlinks, Delort et al., HT’03, 2003 Comment・Genericなweb pageの要約をつくる

・要約を作る際に,ページの内容から作るわけではなく,contextを用いて作る.contextとは,target pageにリンクを張っているページにおけるリンクの周辺にある文のこと.

・contextを利用した要約では,partialityとtopicalityに関する問題が生じる.partialityとは,contextに含まれる情報がtarget pageに関する一部の情報しか含んでいない問題.topicalityとは,そもそもcontextに含まれる情報が,target pageのoverviewに関する情報を含んでいない問題

・partialityに関しては,contextに含まれる文を除くことで,contextのoverallな情報が失われない最小のsetを求めることで対応.setを求める際には,context内の2文の単語を比較し,identicalなrepresentationが含まれているかどうかを計算.重複するものは排除することでsetを求める.

・topicalityに関しては,target pageのtextual informationが取得できる場合は,context内の文中の単語がtarget page内に含まれる単語の比率を出すことでtopicality scoreを算出.topicality scoreが高いものを要約とする.一方,target pageのtextual informationが十分でない場合は,context内の文のクラスタリングを行い,各クラスタのcentroidと近い文を抽出.
#Article #NLP #Snippets #QueryBiased Issue Date: 2017-12-28 A task-oriented study on the influencing effects of query-biased summarization in web searching, White et al., Information Processing and Management, 2003 Comment・search engineにおいてquery-biasedな要約の有用性を示したもの

・task-orientedな評価によって,提案手法がGoogleやAltaVistaのスニペットよりも良いことを示す.

・提案手法は文選択によるquery-biased summarization.スコアリングには,ページのタイトルに含まれる単語がどれだけ含まれているか,文のページ内での出現位置,クエリとの関連度,文の書式(太字)などの情報を使う.

・スニペットが作れないページに対しては,エラーメッセージを返したり,ページ内の最初のnon-textualな要素を返したりする.
#Article #NLP #Temporal Issue Date: 2017-12-28 HLTCOE at TREC 2013: Temporal Summarization, Xu et al, [TREC 2013] #Article #NLP #Temporal Issue Date: 2017-12-28 BJUT at TREC 2013 Temporal Summarization Track, yang et al. [TREC2013] Comment・次のモジュールにより構成される。Preprocess, Retrieval, Information expansion, Sentence choosing and ranking



・Preprocess: GPGファイルをTXTファイルに変換。indexをはる。

・Retrieval: 検索エンジンとしてLemur searchを使っている。クエリ拡張と単語の重み付けができるため。(DocumentをRetrievalする)

・Information Expansion: 検索結果を拡張するためにK-meansを用いる。

・Sentence choosing and ranking: クラスタリング後に異なるクラスタの中心から要約を構築する。

time factorとsimilarity factorによってsentenceがランク付けされる。(詳細なし)

・Retrievalにおいては主にTF-IDFとBM25を用いている。

・traditionalなretrieval methodだけではperform wellではないので、Information Expansionをする。k-meansをすることで、異なるイベントのトピックに基づいてクラスタを得ることができる。クラスタごとの中心のドキュメントのtop sentencesをとってきて、要約とする。最終的にイベントごとに50 sentencesを選択する。

・生成したSequential Update Summarizationからvalueを抜いてきて、Value Trackingをする。



・Updateの部分をどのように実装しているのか?
#Article #NLP #Update #Dataset Issue Date: 2017-12-28 DUC 2007, Update Summarization Dataset CommentDUC 2007:https://duc.nist.gov/duc2007/tasks.html #Article #NLP #Update Issue Date: 2017-12-28 Update Summary Update, Copeck et al., [TAC’08] Comment被引用数は少ないが、良い論文からreferされているイメージ #Article #NLP #Update #EACL Issue Date: 2017-12-28 DualSum: a Topic-Model based approach for update summarization, Delort et al., [EACL’12] Comment・大半のupdate summarizationの手法はdocument set Aがgivenのとき,document set Bのupdate summarizationをつくる際には,redundancy removalの問題として扱っている.

・この手法は,1つのsentenceの中にredundantな情報とnovelな情報が混在しているときに,そのsentenceをredundantなsentenceだと判別してしまう問題点がある.加えて,novel informationを含んでいると判別はするけれども,明示的にnovel informationがなんなのかということをモデル化していない.

・Bayesian Modelを使うことによって,他の手法では抜け落ちている確率的な取り扱いが可能にし, unsupervisedでできるようにする.
#Article #NLP #Update #CIKM Issue Date: 2017-12-28 Document Update Summarization Using Incremental Hierarchical Clustering, Wang et al., [CIKM’10] Comment・既存のMDSではdocumentをbatch処理するのが前提.typicalなクラスタリングベースの手法やグラフベースの手法はsentence-graphを構築して要約を行う.しかし,情報がsequentialに届き,realtimeで要約を行いたいときにこのような手法を使うと,毎回すでに処理したことがあるテキストを処理することになり,time consumingだし,無駄な処理が多い.特に災害時などでは致命的.このような問題に対処するために,ドキュメントがarriveしたときに,ただちにupdate summaryが生成できる手法を提案する.

・既存のヒューリスティックなfeature(tf-isfやキーワード数など)を用いたスコアリングは,existing sentencesとnewly coming sentencesが独立しているため,real world scenarioにおいて実用的でないし,hardly perform wellである.

・なので,incremental hierarchical clusteringの手法でsentence clusterをre-organizeすることで,効果的に要約のupdateを行う.このとき,sentence同士のhierarchical relationshipはreal timeにre-constructされる.

・TACのupdate summarizationとは定義が微妙に違うらしい.主に2点.TACではnewly coming documentsだけを対象にしているが,この研究 ではすべてのドキュメントを対象にする.さらに,TACでは一度だけupdate summarizationする(document set Bのみ)が,この研究ではdocumentsがsequenceでarriveするのを前提にする.なので,TACに対しても提案手法は適用可能.

・Sequence Update Summarizationの先駆け的な研究かもしれない.SUSがのshared taskになったのは2013だし.

・incremental hierarchical clusteringにはCOBWEB algorithm (かなりpopularらしい)を使う.COBWEBアルゴリズムは,新たなelementが現れたとき,Category Utilityと呼ばれるcriterionを最大化するように,4種類の操作のうち1つの操作を実行する(insert(クラスタにsentenceを挿入), create(新たなクラスタつくる), merge(2クラスタを1つに),split(existingクラスタを複数のクラスタに)).ただ,もとのCOBWEBで使われているnormal attribute distributionはtext dataにふさわしくないので,Katz distributionをword occurrence distributionとして使う(Sahooらが提案している.).元論文読まないと詳細は不明.

・要約の生成は,実施したoperationごとに異なる.



・Insertの場合: クラスタを代表するsentenceをクエリとのsimilarity, クラスタ内のsentenceとのintra similarityを計算して決めて出力する.

・createの場合: 新たに生成したクラスタcluster_kを代表する文を,追加したsentence s_newとする.

・mergeの場合: cluster_aとcluster_bをmergeして新たなcluster_cを作った場合,cluster_cを代表する文を決める.cluster_cを代表する文は,cluster_aとcluster_bを代表する文とクエリとのsimilarityをはかり,similarityが大きいものとする.

・splitの場合: cluster_aをsplitしてn個の新たなクラスタができたとき,各新たなn個のクラスタにおいて代表する文を,original subtreeの根とする.



・TAC08のデータとHurricane Wilma Releasesのデータ(disaster systemからtop 10 queryを取得,5人のアノテータに正解を作ってもらう)を使って評価.(要約の長さを揃えているのかが気になる。長さが揃っていないからROUGEのF値で比較している?)

・一応ROUGEのF値も高いし,速度もbaselineと比べて早い.かなりはやい.genericなMDSとTAC participantsと比較.TAC Bestと同等.GenericMDSより良い.document setAの情報を使ってredundancy removalをしていないのにTAC Bestを少しだけoutperform.おもしろい.

・かつ,TAC bestはsentence combinationを繰り返す手法らしく,large-scale online dataには適していないと言及.
#Article #NLP #Update #CIKM Issue Date: 2017-12-28 Incremental Update Summarization: Adaptive Sentence Selection based on Prevalence and Novelty, McCreadie et al., CIKM’14 Comment・timelyなeventに対してupdate summarizationを適用する場合を考える.たとえば6日間続いたeventがあったときにその情報をユーザが追う為に何度もupdate summarizationシステムを用いる状況を考える.6日間のうち新しい情報が何も出てこない期間はirrelevantでredundantな内容を含む要約が出てきてしまう.これをなんとかする手法が必要だというのがmotivation.



image



・どのような手法かというと,news streamsからnovel updatesをtimely mannerで自動抽出し,一方で,抽出するupdatesはirrelevant, uninformative or redundant contentを最小化するようなもの手法

・手法は既存のUpdate Summarization手法(lambdaMART, learning to rank baseの手法)で10文を出力し,何文目までを残すか(rank-cut off problem)を解くことで,いらないsentenceをはぶいている.

・rank cut offをする際はlinear regressionとModel Treesを使っているが,linear regressionのような単純な手法だと精度があがらず,Model Treesを使ったほうがいい結果が出た.

・素性は主にprevalence (sentenceが要約したいトピックに沿っているか否か),novelty(sentenceが新しい情報を含んでいるか),quality(sentenceがそもそも重要かどうか)の3種類の素性を使っている.気持ちとしては,prevalenceとnoveltyの両方が高いsentenceだけを残したいイメージ.つまり,トピックに沿っていて,なおかつ新しい情報を含んでいるsentence

・loss functionには,F値のような働きをするものを採用(とってきたrelevant updateのprecisionとrecallをはかっているイメージ).具体的には,Expected Latency GainとLatency Comprehensivenessと呼ばれるTREC2013のquality measureに使われている指標を使っている.

・ablation testの結果を見ると,qualityに関する素性が最もきいている.次にnovelty,次点でprevalence

・提案手法はevent発生から時間が経過すると精度が落ちていく場合がある.

・classicalなupdate summarizationの手法と比較しているが,Classyがかなり強い,Model treesを使わない提案手法や,他のbaselineを大きくoutperform. ただ,classyはmodel treesを使ったAdaptive IUSには勝てていない.

・TREC 2013には,Sequantial Update Summarizationタスクなるものがあるらしい.ユーザのクエリQと10個のlong-runnning event(典型的には10日間続くもの,各イベントごとに800〜900万記事),正解のnuggetsとそのtimestampが与えられたときにupdate summarizationを行うタスクらしい.
#Article #NLP #Update #CIKM Issue Date: 2017-12-28 Update Summarization using Semi-Supervised Learning Based on Hellinger Distance, Wang et al., CIKM’15, 2015.10 Comment・Hellinger Distanceを用いてSentence Graphを構築.ラベル伝搬により要約に含める文を決定する手法

・update summarizationの研究ではsimilarityをはかるときにcosine similarityを用いることが多い.

・cosine similarityはユークリッド距離から直接的に導くことができる.

・Vector Space Modelはnonnegativeなmatrixを扱うので,確率的なアプローチで取り扱いたいが,ユークリッド距離は確率を扱うときにあまり良いmetricではない.そこでsqrt-cos similarityを提案する.sqrt-cosは,Hellinger Distanceから求めることができ,Hellinger Distanceは対称的で三角不等式を満たすなど,IRにおいて良いdistance measureの性質を持っている.(Hellinger Distanceを活用するために結果的に類似度の尺度としてsqrt-cosが出てきたとみなせる)

・またHellinger DistanceはKL Divergenceのsymmetric middle pointとみなすことができ,文書ベクトル生成においてはtf_idfとbinary weightingのちょうど中間のような重み付けを与えているとみなせる.

・要約を生成する際は,まずはset Aの文書群に対してMMR 243 を適用する(redundancyの項がmaxではなくて平均になっている).similarityはsqrt-cosを用いる.

・sqrt-cosと,set Aの要約結果を用いると,sentence graphを構築できる.sentence graphはset Aとset Bの各sentenceをノードとするグラフで,エッジの重みはsqrt-cosとなっている.このsentence graph上でset Aの要約結果のラベルをset B側のノードに伝搬させることで,要約に含めるべき文を選択する.

・ラベル伝搬にはGreen’s functionを用いる.set Bにlabel “1”がふられるものは,given topicとset Aのcontentsにrelevantなsentenceとなる.

・TAC2011のデータで評価した結果,standardなMMRを大幅にoutperform, co-ranking, Centroidベースの手法などよりも良い結果.
#Article #NLP #Update #SIGIR Issue Date: 2017-12-28 TimedTextRank: Adding the Temporal Dimension to Multi-Document Summarization, Xiaojun Wan, SIGIR’07, 2007.07 Comment・evolving topicsを要約するときは,基本的に新しい情報が重要だが,TextRankはそれが考慮できないので拡張したという話.

・dynamic document setのnew informationをより重視するTimedTextRankを提案

・TextRankのvoteの部分に重み付けをする.old sentenceからのvoteよりも,new documentsに含まれるsentenceからのvoteをより重要視

・評価のときは,news pageをクローリングし,incremental single-pass clustering algorithmでホットなトピックを抽出しユーザにみせて評価(ただしこれはPreliminary Evaluation).
#Article #NLP #Update Issue Date: 2017-12-28 The LIA Update Summarization Systems at TAC-2008, Boudin et al. TAC’08, 2008.11 Comment・Scalable MMR 32 とVariable length intersection gap n-term modelを組み合わせる.

・Variable length intersection gap n-term modelは,あるトピックのterm sequenceは他の異なる語と一緒にでてくる?という直感にもとづく.要は,drugs.treat.mental.illnessなどのパターンをとってきて活用する.このようなパターンをn-gram, n-stem, n-lemmaごとにつくり3種類のモデルを構築.この3種類のモデルに加え,coverage rate (topic vocabularyがセグメント内で一度でもみつかる割合)とsegmentのpositionの逆数を組みあわせて,sentenceのスコアを計算(先頭に近いほうが重要).

・coherenceを担保するために,sentenceを抽出した後,以下のpost-processingを行う.



Acronym rewriting(初めてでてくるNATOなどの頭字語はfull nameにする)

Date and number rewriting(US standard formsにする)

Temporal references rewriting (next yearなどの曖昧なreferenceを1993などの具体的なものにする)

Discursive form rewriting (いきなりButがでてくるときとかは削るなど)

カッコやカギカッコは除き,句読点をcleanedする



・TAC 2008におけるROUGE-2の順位は72チーム中32位
#Article #NLP #Update #COLING Issue Date: 2017-12-28 A Scalable MMR Approach to Sentence Scoring for Multi-Document Update Summarization, Boudin et al., COLING’08, 2008.08 Comment・MMR 243 をupdate summarization用に拡張.History(ユーザが過去に読んだsentence)の数が多ければ多いほどnon-redundantな要約を出す (Queryに対するRelevanceよりもnon-redundantを重視する)

・Historyの大きさによって,redundancyの項の重みを変化させる.

・MMRのredundancyの項を1-max Sim2(s, s_history)にすることでnoveltyに変更.ORよりANDの方が直感的なので二項の積にする.

・MMRのQueryとのRelevanceをはかる項のSimilarityは,cossimとJaro-Winkler距離のinterpolationで決定. Jaro-Winkler距離とは,文字列の一致をはかる距離で,値が大きいほど近い文字列となる.文字ごとの一致だけでなく,ある文字を入れ替えたときにマッチ可能かどうかも見る.一致をはかるときはウィンドウを決めてはかるらしい.スペルミスなどの検出に有用.クエリ内の単語とselected sentences内の文字列のJaro-Winkler距離を計算.各クエリごとにこれらを求めクエリごとの最大値の平均をとる.

・冗長性をはかるSim2では,normalized longest common substringを使う.
#Article #NLP #IntegerLinearProgramming (ILP) #Update #NAACL Issue Date: 2017-12-28 Improving Update Summarization via Supervised ILP and Sentence Reranking, Li et al. NAACL’15, 2015.05 Comment・update summarizationをILPで定式化.基本的なMDSのILPのterm weightingにsalienceの要素に加えてnoveltyの要素を加える.term weightingにはbigramを用いる.bigram使うとよくなることがupdate summarizationだと知られている.weightingは平均化パーセプトロンで学習

・ILPでcandidate sentencesを求めたあと,それらをSVRを用いてRerankingする.SVRのloss functionはROUGE-2を使う.

・Rerankingで使うfeatureはterm weightingした時のsentenceレベルのfeatureを使う.

・RerankingをするとROUGE-2スコアが改善する.2010, 2011のTAC Bestと同等,あるいはそれを上回る結果.novelty featureを入れると改善.

・noveltyのfeatureは,以下の通り.



Bigram Level

 -bigramのold datasetにおけるDF

 -bigram novelty value (new datasetのbigramのDFをold datasetのDFとDFの最大値の和で割ったもの)

 -bigram uniqueness value (old dataset内で出たbigramは0, すでなければ,new dataset内のDFをDFの最大値で割ったもの)

Sentence Level

 -old datasetのsummaryとのsentence similarity interpolated n-gram novelty (n-gramのnovelty valueをinterpolateしたもの)

 -interpolated n-gram uniqueness (n-gramのuniqueness valueをinterpolateしたもの)



・TAC 2011の評価の値をみると,Wanらの手法よりかなり高いROUGE-2スコアを得ている.
#Article #NLP #Update #COLING Issue Date: 2017-12-28 Update Summarization Based on Co-Ranking with Constraints, Wiaojun Wan, COLING’12, 2012.12 Comment・PageRankの枠組みを拡張してold datasetとnew dataset内のsentenceをco-ranking

・co-rankingするときは,update scoreとconsistency scoreというものを求め相互作用させる.

・update scoreが高いsentenceは同じdataset内では正の関係,異なるdataset内では負の関係を持つ.

・consistency scoreが高いsentenceは同じdataset内では正の関係,異なるdataset内では正の関係を持つ.

・負の関係はdissimilarity matrixを用いて表現する.

・あとはupdate scoreとconsistency scoreを相互作用させながらPageRankでスコアを求める.デコーディングはupdate scoreをgreedyに.

・update scoreとconsistency scoreの和は定数と定義,この論文では定数をsentenceのinformative scoreとしている.これがタイトルにある制約.informative scoreはAffinity GraphにPageRankを適用して求める.

・制約が入ることで,consistency scoreが低いとupdate scoreは高くなるような効果が生まれる.逆もしかり.
#Article #Multi #NLP #Extractive Issue Date: 2017-12-28 NewsInEssence: Summarizing ONLINE NEWS TOPICS, Radev+, [Communications of the ACM, 05], 2005.10 Comment・Centroid-Basedな手法(MEADと同じ手法)で要約を生成

・Personalizationはかけていない
#Article #PersonalizedDocumentSummarization #NLP #ACL #COLING Issue Date: 2017-12-28 Automatic Text Summarization based on the Global Document Annotation, COLING-ACL, [Nagao+, 1998], 1998.08 CommentPersonalized summarizationの評価はしていない。提案のみ。以下の3種類の手法を提案

・keyword-based customization

・関心のあるキーワードをユーザが入力し、コーパスやwordnet等の共起関係から関連語を取得し要約に利用する

・文書の要素をinteractiveに選択することによる手法

・文書中の関心のある要素(e.g. 単語、段落等)

・browsing historyベースの手法

・ユーザのbrowsing historyのドキュメントから、yahooディレクトリ等からカテゴリ情報を取得し、また、トピック情報も取得し(要約技術を活用するとのこと)特徴量ベクトルを作成

・ユーザがアクセスするたびに特徴ベクトルが更新されることを想定している?
#Article #GraphBased #Comments #NLP #Extractive #SIGIR Issue Date: 2017-12-28 Comments-Oriented Document Summarization: Understanding Documents with Reader’s Feedback, Hu+, SIGIR’08, 2008.07