Prompting
#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2024-09-29 Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models, Tongxuan Liu+, N_A, arXiv24 CommentSNSで話題になっているようだがGPT-3.5-TurboとGPT-4でしか比較していない上に、いつの時点のモデルかも記述されていないので、unreliableに見える ![image](https://github.com/user-attachments/assets/9ca6fc62-269 ... #Survey#NLP#LanguageModel
Issue Date: 2024-09-02 The Prompt Report: A Systematic Survey of Prompting Techniques, Sander Schulhoff+, N_A, arXiv24 CommentPromptingに関するサーベイ初期の手法からかなり網羅的に記述されているように見える。 ![image](https://github.com/user-attachments/assets/a6e6fd6c-910c-4d5d-a98e-47cf51e254ab)また、誤用されていたり、色々な ... #InformationRetrieval#Pocket#NLP#LanguageModel#Reasoning
Issue Date: 2024-04-07 RankPrompt: Step-by-Step Comparisons Make Language Models Better Reasoners, Chi Hu+, N_A, arXiv24 SummaryLLMsは推論タスクで優れた性能を発揮しているが、論理エラーが起こりやすい。RankPromptという新しいプロンプティング方法を導入し、LLMsが自己ランク付けを行い推論パフォーマンスを向上させる。実験では、RankPromptがChatGPTやGPT-4の推論パフォーマンスを13%向上させ、AlpacaEvalデータセットで人間の判断と74%の一致率を示すことが示された。RankPromptは言語モデルから高品質なフィードバックを引き出す効果的な方法であることが示された。 CommentLLMでランキングをするためのプロンプト手法。大量の候補をランキングするのは困難だと思われるが、リランキング手法としては利用できる可能性がある ...
Issue Date: 2024-09-29 Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models, Tongxuan Liu+, N_A, arXiv24 CommentSNSで話題になっているようだがGPT-3.5-TurboとGPT-4でしか比較していない上に、いつの時点のモデルかも記述されていないので、unreliableに見える ![image](https://github.com/user-attachments/assets/9ca6fc62-269 ... #Survey#NLP#LanguageModel
Issue Date: 2024-09-02 The Prompt Report: A Systematic Survey of Prompting Techniques, Sander Schulhoff+, N_A, arXiv24 CommentPromptingに関するサーベイ初期の手法からかなり網羅的に記述されているように見える。 ![image](https://github.com/user-attachments/assets/a6e6fd6c-910c-4d5d-a98e-47cf51e254ab)また、誤用されていたり、色々な ... #InformationRetrieval#Pocket#NLP#LanguageModel#Reasoning
Issue Date: 2024-04-07 RankPrompt: Step-by-Step Comparisons Make Language Models Better Reasoners, Chi Hu+, N_A, arXiv24 SummaryLLMsは推論タスクで優れた性能を発揮しているが、論理エラーが起こりやすい。RankPromptという新しいプロンプティング方法を導入し、LLMsが自己ランク付けを行い推論パフォーマンスを向上させる。実験では、RankPromptがChatGPTやGPT-4の推論パフォーマンスを13%向上させ、AlpacaEvalデータセットで人間の判断と74%の一致率を示すことが示された。RankPromptは言語モデルから高品質なフィードバックを引き出す効果的な方法であることが示された。 CommentLLMでランキングをするためのプロンプト手法。大量の候補をランキングするのは困難だと思われるが、リランキング手法としては利用できる可能性がある ...
#NaturalLanguageGeneration#Pocket#NLP#DataToTextGeneration#NumericReasoning
Issue Date: 2024-04-04 Prompting for Numerical Sequences: A Case Study on Market Comment Generation, Masayuki Kawarada+, N_A, arXiv24 SummaryLLMsは、構造化データに対するプロンプト生成に関する研究が進んでいるが、時系列数値データに関する詳細な調査が不足している。本研究では、株価の数値系列を入力として市場コメントを生成するタスクに焦点を当て、さまざまな入力表現を探究する。実験結果は、プログラミング言語に似たプロンプトがより良い結果をもたらすことを示しており、数値系列からテキストを生成する際の効果的なプロンプト作成について示唆を提供している。 CommentData-to-Text系のタスクでは、しばしば数値列がInputとなり、そこからテキストを生成するが、この際にどのようなフォーマットで数値列をPromptingするのが良いかを調査した研究。Pythonリストなどのプログラミング言語に似たプロンプトが高い性能を示し、自然言語やhtml, latex ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2024-03-05 Chain-of-Thought Reasoning Without Prompting, Xuezhi Wang+, N_A, arXiv24 SummaryLLMsの推論能力を向上させるための新しいアプローチに焦点を当てた研究が行われている。この研究では、LLMsがプロンプトなしで効果的に推論できるかどうかを検証し、CoT推論パスをデコーディングプロセスを変更することで引き出す方法を提案している。提案手法は、従来の貪欲なデコーディングではなく、代替トークンを調査することでCoTパスを見つけることができることを示しており、様々な推論ベンチマークで有効性を示している。 Comment以前にCoTを内部的に自動的に実施されるように事前学習段階で学習する、といった話があったと思うが、この研究はデコーディング方法を変更することで、promptingで明示的にinstructionを実施せずとも、CoTを実現するもの、ということだと思われる。 ... #ComputerVision#Pocket#ImageSegmentation#In-ContextLearning
Issue Date: 2023-11-23 Visual In-Context Prompting, Feng Li+, N_A, arXiv23 Summary本研究では、ビジョン領域における汎用的なビジュアルインコンテキストプロンプティングフレームワークを提案します。エンコーダーデコーダーアーキテクチャを使用し、さまざまなプロンプトをサポートするプロンプトエンコーダーを開発しました。さらに、任意の数の参照画像セグメントをコンテキストとして受け取るように拡張しました。実験結果から、提案手法が非凡な参照および一般的なセグメンテーション能力を引き出し、競争力のあるパフォーマンスを示すことがわかりました。 CommentImage Segmentationには、ユーザが与えたプロンプトと共通のコンセプトを持つすべてのオブジェクトをセグメンテーションするタスクと、ユーザの入力の特定のオブジェクトのみをセグメンテーションするタスクがある。従来は個別のタスクごとに、特定の入力方法(Visual Prompt, Image ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-11-19 Contrastive Chain-of-Thought Prompting, Yew Ken Chia+, N_A, arXiv23 Summary言語モデルの推論を改善するために、対照的なchain of thoughtアプローチを提案する。このアプローチでは、有効な推論デモンストレーションと無効な推論デモンストレーションの両方を提供し、モデルが推論を進める際にミスを減らすようにガイドする。また、自動的な方法を導入して対照的なデモンストレーションを構築し、汎化性能を向上させる。実験結果から、対照的なchain of thoughtが一般的な改善手法として機能することが示された。 #Pocket#NLP#LanguageModel#Chain-of-Thought#RetrievalAugmentedGeneration
Issue Date: 2023-11-17 Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models, Wenhao Yu+, N_A, arXiv23 Summary検索補完言語モデル(RALM)は、外部の知識源を活用して大規模言語モデルの性能を向上させるが、信頼性の問題や知識の不足による誤った回答がある。そこで、Chain-of-Noting(CoN)という新しいアプローチを導入し、RALMの頑健性を向上させることを目指す。CoNは、順次の読み取りノートを生成し、関連性を評価して最終的な回答を形成する。ChatGPTを使用してCoNをトレーニングし、実験結果はCoNを装備したRALMが標準的なRALMを大幅に上回ることを示している。特に、ノイズの多いドキュメントにおいてEMスコアで平均+7.9の改善を達成し、知識範囲外のリアルタイムの質問に対する拒否率で+10.5の改善を達成している。 Comment一番重要な情報がappendixに載っているCoNによって、ノイズがあった場合にゲインが大きい。 ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-11-15 Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster, Hongxuan Zhang+, N_A, arXiv23 Summaryこの研究では、FastCoTというフレームワークを提案します。FastCoTは、LLMを使用して並列デコーディングと自己回帰デコーディングを同時に行い、計算リソースを最大限に活用します。また、FastCoTは推論時間を約20%節約し、性能の低下がほとんどないことを実験で示しました。さらに、異なるサイズのコンテキストウィンドウに対しても頑健性を示すことができました。 Comment論文中の図を見たが、全くわからなかった・・・。ちゃんと読まないとわからなそうである。 ... #Pocket#NLP#LanguageModel#AutomaticPromptEngineering
Issue Date: 2023-11-13 Prompt Engineering a Prompt Engineer, Qinyuan Ye+, N_A, arXiv23 Summaryプロンプトエンジニアリングは、LLMsのパフォーマンスを最適化するための重要なタスクであり、本研究ではメタプロンプトを構築して自動的なプロンプトエンジニアリングを行います。改善されたパフォーマンスにつながる推論テンプレートやコンテキストの明示などの要素を導入し、一般的な最適化概念をメタプロンプトに組み込みます。提案手法であるPE2は、さまざまなデータセットやタスクで強力なパフォーマンスを発揮し、以前の自動プロンプトエンジニアリング手法を上回ります。さらに、PE2は意味のあるプロンプト編集を行い、カウンターファクトの推論能力を示します。 #NLP#LanguageModel#QuestionAnswering
Issue Date: 2023-10-30 Re-Reading Improves Reasoning in Language Models, Xiaohan Xu+, N_A, arXiv23 Summary大規模言語モデル(LLMs)において、推論は重要で困難な問題です。従来のアプローチでは、プロンプティング戦略を開発することに焦点が当てられてきましたが、双方向の相互作用や質問の重要性には注意が払われていませんでした。この問題に対処するため、質問の再読という新しいプロンプティング戦略を提案します。再読は、質問情報を再訪することで、LLMsの推論能力を向上させることができます。実験結果は、この手法の効果と汎用性を示しており、LLMsの領域でのその有用性を強調しています。 Comment問題文を2,3回promptで繰り返すだけで、数学のベンチマークとCommonsenseのベンチマークの性能が向上したという非常に簡単なPrompting。self-consistencyなどの他のPromptingとの併用も可能。なぜ性能が向上するかというと、1. LLMはAuporegresこの ... #MachineLearning#Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-24 Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs Non-linear Thinking, Yongqi Tong+, N_A, arXiv23 Summary本研究では、大規模言語モデル(LLMs)に非線形の思考を促すために、新しいプロンプティング方法であるInferential Exclusion Prompting(IEP)を提案する。IEPは、計画を立てて可能な解を推論し、逆推論を行うことで広い視点を得ることができる。IEPは他の手法と比較して複雑な人間の思考プロセスをシミュレートできることを実証し、LLMsのパフォーマンス向上にも貢献することを示した。さらに、Mental-Ability Reasoning Benchmark(MARB)を導入し、LLMsの論理と言語推論能力を評価するための新しいベンチマークを提案した。IEPとMARBはLLMsの研究において有望な方向性であり、今後の進展が期待される。 Comment元論文は読んでいないのだが、CoTが線形的だという主張がよくわからない。CoTはAutoregressiveな言語モデルに対して、コンテキストを自己生成したテキストで利用者の意図した方向性にバイアスをかけて補完させ、利用者が意図した通りのアウトプットを最終的に得るためのテクニック、だと思っていて ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-13 Meta-CoT: Generalizable Chain-of-Thought Prompting in Mixed-task Scenarios with Large Language Models, Anni Zou+, N_A, arXiv23 Summary本研究では、大規模言語モデル(LLMs)を使用して、推論のためのチェーン・オブ・ソート(CoT)プロンプトを生成する方法を提案しています。従来のCoTの方法では、一般的なプロンプトや手作業デモンストレーションに依存していましたが、本研究では入力質問のタイプに基づいて自動的にプロンプトを生成するMeta-CoTを提案しています。Meta-CoTは、10のベンチマーク推論タスクで優れたパフォーマンスを示し、SVAMPでは最先端の結果を達成しました。また、分布外データセットでも安定性と汎用性が確認されました。 Comment色々出てきたがなんかもう色々組み合わせれば最強なんじゃね?って気がしてきた。 ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-12 Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models, Huaixiu Steven Zheng+, N_A, arXiv23 SummaryStep-Back Promptingは、大規模言語モデル(LLMs)を使用して推論の手順をガイドするシンプルなプロンプティング技術です。この技術により、LLMsは具体的な詳細から高レベルの概念や基本原則を抽象化し、正しい推論経路をたどる能力を向上させることができます。実験により、Step-Back PromptingはSTEM、Knowledge QA、Multi-Hop Reasoningなどのタスクにおいて大幅な性能向上が観察されました。具体的には、MMLU Physics and Chemistryで7%、11%、TimeQAで27%、MuSiQueで7%の性能向上が確認されました。 Commentまた新しいのが出た ... #Pocket#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-09 Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution, Chrisantha Fernando+, N_A, arXiv23 Summary本研究では、Promptbreederという自己参照的な自己改善メカニズムを提案し、大規模言語モデル(LLM)の推論能力を向上させるための汎用的なプロンプト戦略を進化させる方法を示しています。Promptbreederは、LLMが自己参照的な方法で進化する変異プロンプトによって制御され、タスクプロンプトの集団を変異させて改善します。この手法は、算術や常識的な推論のベンチマークだけでなく、ヘイトスピーチ分類などの難しい問題に対しても優れた性能を発揮します。 Comment詳細な解説記事: https://aiboom.net/archives/56319APEとは異なり、GAを使う。突然変異によって、予期せぬ良いpromptが生み出されるかも…? ... #Pocket#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-09 Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic, Xufeng Zhao+, N_A, arXiv23 Summary大規模言語モデルの進歩は驚異的だが、多段階の推論には改善の余地がある。大規模言語モデルは知識を持っているが、推論には一貫性がなく、幻覚を示すことがある。そこで、Logical Chain-of-Thought(LogiCoT)というフレームワークを提案し、論理による推論パラダイムの効果を示した。 Commentまーた新しいX of Thoughtが出た。必要そうなら読む。 ... #GraphBased#Pocket#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-09 Graph Neural Prompting with Large Language Models, Yijun Tian+, N_A, arXiv23 Summary本研究では、大規模言語モデル(LLMs)を知識グラフと組み合わせるための新しい手法であるGraph Neural Prompting(GNP)を提案しています。GNPは、標準的なグラフニューラルネットワークエンコーダやクロスモダリティプーリングモジュールなどの要素から構成されており、異なるLLMのサイズや設定において、常識的な推論タスクやバイオメディカル推論タスクで優れた性能を示すことが実験によって示されました。 Comment以下elvis氏のツイートの意訳事前学習されたLLMがKGから有益な知識を学習することを支援する手法を提案。元ツイート: https://arxiv.org/abs/2309.15427しっかり論文を読んでいないが、freezeしたLLMがあった時に、KGから求めたGraph Neural Prom ... #NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-07 Large Language Models as Analogical Reasoners, Michihiro Yasunaga+, N_A, arXiv23 Summary本研究では、言語モデルの推論プロセスを自動的にガイドするための新しいプロンプティング手法であるアナロジカルプロンプティングを提案しています。この手法は、関連する過去の経験を引用して新しい問題に取り組む認知プロセスに倣い、問題を解決する前に文脈内で関連する例示や知識を自己生成させるように言語モデルに促します。この手法は、例示のラベリングや検索の必要性を排除し、一般性と適応性を提供します。実験結果は、この手法がさまざまな推論タスクで他の手法を上回ることを示しています。 Comment以下、著者ツイートのざっくり翻訳: https://x.com/michiyasunaga/status/1709582150025240854?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q人間は新しい問題に取り組む時、過去に解いた類義の問題を振り返り、その経験を活用する。これをLLL ... #NLP#LanguageModel#QuestionAnswering#Chain-of-Thought
Issue Date: 2023-09-30 Chain-of-Verification Reduces Hallucination in Large Language Models, Shehzaad Dhuliawala+, N_A, arXiv23 Summary私たちは、言語モデルが根拠のない情報を生成する問題に取り組んでいます。Chain-of-Verification(CoVe)メソッドを開発し、モデルが回答を作成し、検証し、最終的な回答を生成するプロセスを経ることで、幻想を減少させることができることを実験で示しました。 Comment# 概要 ユーザの質問から、Verificationのための質問をplanningし、質問に対して独立に回答を得たうえでオリジナルの質問に対するaggreementを確認し、最終的に生成を実施するPrompting手法 # 評価 ## dataset Wikidata ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-09-04 Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models, Bilgehan Sel+, N_A, arXiv23 Summary大規模言語モデル(LLMs)の推論能力を向上させるために、新しい戦略「Algorithm of Thoughts」を提案している。この戦略では、LLMsをアルゴリズム的な推論経路に導き、わずか1つまたは数個のクエリでアイデアの探索を拡大する。この手法は、以前の単一クエリ手法を上回り、マルチクエリ戦略と同等の性能を発揮する。また、LLMを指導するアルゴリズムを使用することで、アルゴリズム自体を上回るパフォーマンスが得られる可能性があり、LLMが最適化された検索に自己の直感を織り込む能力を持っていることを示唆している。 #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-08-22 Large Language Model Guided Tree-of-Thought, Jieyi Long, N_A, arXiv23 Summaryこの論文では、Tree-of-Thought(ToT)フレームワークを紹介し、自己回帰型の大規模言語モデル(LLM)の問題解決能力を向上させる新しいアプローチを提案しています。ToTは、人間の思考方法に触発された技術であり、複雑な推論タスクを解決するためにツリー状の思考プロセスを使用します。提案手法は、LLMにプロンプターエージェント、チェッカーモジュール、メモリモジュール、およびToTコントローラーなどの追加モジュールを組み込むことで実現されます。実験結果は、ToTフレームワークがSudokuパズルの解決成功率を大幅に向上させることを示しています。 #Pocket#NLP#LanguageModel
Issue Date: 2023-08-22 Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding, Yuxi Xie+, N_A, arXiv23 Summary私たちは、大規模言語モデル(LLMs)を使用して、推論の品質と多様性を向上させるための効果的なプロンプティングアプローチを提案しました。自己評価によるガイド付き確率的ビームサーチを使用して、GSM8K、AQuA、およびStrategyQAのベンチマークで高い精度を達成しました。また、論理の失敗を特定し、一貫性と堅牢性を向上させることもできました。詳細なコードはGitHubで公開されています。 Comment ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-08-22 Graph of Thoughts: Solving Elaborate Problems with Large Language Models, Maciej Besta+, N_A, arXiv23 Summary私たちは、Graph of Thoughts(GoT)というフレームワークを紹介しました。これは、大規模言語モデル(LLMs)のプロンプティング能力を進化させるもので、任意のグラフとしてモデル化できることが特徴です。GoTは、思考の組み合わせやネットワーク全体の本質の抽出、思考の強化などを可能にします。さまざまなタスクで最先端の手法に比べて利点を提供し、LLMの推論を人間の思考に近づけることができます。 CommentChain of Thought #551 => Self-consistency #558 => Thought Decomposition #1013 => Tree of Thoughts #684 Tree of Thought #1015 => Graph of Thoug ... #Pocket#NLP#LanguageModel
Issue Date: 2023-08-12 Metacognitive Prompting Improves Understanding in Large Language Models, Yuqing Wang+, N_A, arXiv23 Summary本研究では、LLMsにメタ認知プロンプト(MP)を導入し、人間の内省的な推論プロセスを模倣することで、理解能力を向上させることを目指しています。実験結果は、MPを備えたPaLMが他のモデルに比べて優れたパフォーマンスを示しており、MPが既存のプロンプト手法を上回ることを示しています。この研究は、LLMsの理解能力向上の可能性を示し、人間の内省的な推論を模倣することの利点を強調しています。 CommentCoTより一貫して性能が高いので次のデファクトになる可能性あり ... #Pocket#NLP#LanguageModel
Issue Date: 2023-08-07 Do Multilingual Language Models Think Better in English?, Julen Etxaniz+, N_A, arXiv23 Summaryself-translateは、マルチリンガル言語モデルの少数ショット翻訳能力を活用する新しいアプローチであり、外部の翻訳システムの必要性を克服する。実験結果は、self-translateが直接推論を上回る性能を示し、非英語の言語でプロンプトされた場合にも有効であることを示している。コードはhttps://github.com/juletx/self-translateで利用可能。 Comment参考: https://twitter.com/imai_eruel/status/1687735268311511040?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q ... #Efficiency/SpeedUp#MachineLearning#Pocket
Issue Date: 2023-07-24 Batch Prompting: Efficient Inference with Large Language Model APIs, Zhoujun Cheng+, N_A, arXiv23 Summary大規模な言語モデル(LLMs)を効果的に使用するために、バッチプロンプティングという手法を提案します。この手法は、LLMが1つのサンプルではなくバッチで推論を行うことを可能にし、トークンコストと時間コストを削減しながらパフォーマンスを維持します。さまざまなデータセットでの実験により、バッチプロンプティングがLLMの推論コストを大幅に削減し、良好なパフォーマンスを達成することが示されました。また、バッチプロンプティングは異なる推論方法にも適用できます。詳細はGitHubのリポジトリで確認できます。 Comment10種類のデータセットで試した結果、バッチにしても性能は上がったり下がったりしている。著者らは類似した性能が出ているので、コスト削減になると結論づけている。Batch sizeが大きくなるに連れて性能が低下し、かつタスクの難易度が高いとパフォーマンスの低下が著しいことが報告されている。また、cont ... #Survey#NLP#LanguageModel#Reasoning
Issue Date: 2023-07-18 Reasoning with Language Model Prompting: A Survey, ACL23 Summary本論文では、推論に関する最新の研究について包括的な調査を行い、初心者を支援するためのリソースを提供します。また、推論能力の要因や将来の研究方向についても議論します。リソースは定期的に更新されています。 #NaturalLanguageGeneration#Controllable#NLP
Issue Date: 2023-07-15 Tailor: A Soft-Prompt-Based Approach to Attribute-Based Controlled Text Generation, ACL23 Summary属性ベースの制御されたテキスト生成(CTG)では、望ましい属性を持つ文を生成することが目指されている。従来の手法では、ファインチューニングや追加の属性分類器を使用していたが、ストレージと推論時間の増加が懸念されていた。そこで、本研究では効率的なパラメータを使用した属性ベースのCTGを提案している。具体的には、各属性を事前学習された連続ベクトルとして表現し、固定された事前学習言語モデルをガイドして属性を満たす文を生成する。さらに、2つの解決策を提供して、組み合わせを強化している。実験の結果、追加のトレーニングパラメータのみで効果的な改善が実現できることが示された。 #InformationRetrieval#LearningToRank#LanguageModel
Issue Date: 2023-07-11 Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting, Zhen Qin+, N_A, arXiv23 SummaryLLMsを使用してドキュメントをランキングする際に、Pairwise Ranking Prompting(PRP)という新しい技術を提案する。PRPは、LLMsへの負荷を軽減し、最先端のランキングパフォーマンスを達成することができる。具体的には、20Bパラメータを持つFlan-UL2モデルに基づくPRPは、商用のGPT-4に基づく従来の手法を上回る結果を示した。さらに、PRPのバリアントを提案し、効率を改善することができることを示した。PRPは生成とスコアリングのLLM APIの両方をサポートし、入力の順序に対して無感度であることも示された。 Commentopen source LLMをスタンダードなベンチマークでSoTAを達成できるようなprompting技術を提案 ... #Survey#LanguageModel
Issue Date: 2023-07-11 A Survey of Large Language Models, Wayne Xin Zhao+, N_A, arXiv23 Summary言語モデリングの進化により、大規模言語モデル(LLM)が注目されている。LLMは、事前学習、適応調整、利用、容量評価の4つの側面に焦点を当てて研究されており、AIアルゴリズムの開発と使用方法に革新をもたらす可能性がある。本調査では、LLMの最近の進展と将来の方向性についてレビューし、残された課題についても議論する。 Comment現状で最も詳細なLLMのサーベイ600個のリファレンス、LLMのコレクション、promptingのtips、githubリポジトリなどがまとめられている ... #Pocket#NLP#LanguageModel
Issue Date: 2023-05-20 Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Shunyu Yao+, N_A, arXiv23 Summary言語モデルの推論には制限があり、探索や戦略的先読みが必要なタスクには不十分である。そこで、Tree of Thoughts(ToT)という新しいフレームワークを導入し、Chain of Thoughtアプローチを一般化して、意思決定を行うことができるようにした。ToTにより、言語モデルは複数の異なる推論パスを考慮して、次の行動を決定することができる。ToTは、Game of 24、Creative Writing、Mini Crosswordsなどのタスクにおいて、言語モデルの問題解決能力を大幅に向上させることができることを示している。 CommentSelf Concistencyの次Non trivialなプランニングと検索が必要な新たな3つのタスクについて、CoT w/ GPT4の成功率が4%だったところを、ToTでは74%を達成論文中の表ではCoTのSuccessRateが40%と書いてあるような? ... #NLP#LanguageModel#QuestionAnswering#TheoryOfMind
Issue Date: 2023-04-28 Boosting Theory-of-Mind Performance in Large Language Models via Prompting, Moghaddam+, Johns Hopkins University, arXiv23 CommentLLMはTheory-of-mind reasoningタスクが苦手なことが知られており、特にzero shotでは非常にパフォーマンスが低かった。ToMタスクとは、エージェントの信念、ゴール、メンタルstate、エージェントが何を知っているか等をトラッキングすることが求められるタスクのこと。このよ ... #NLP#LanguageModel
Issue Date: 2023-04-28 Exploring the Curious Case of Code Prompts, Zhang+, University of Pennsylvania, arXiv23 CommentコードベースのLLMに対して、reasoningタスクを解かせる際には、promptもコードにすると10パーセント程度性能上がる場合があるよ、という研究。![image](https://user-images.githubusercontent.com/12249301/235037840-1fた ... #NLP#LanguageModel#QuestionAnswering#Chain-of-Thought
Issue Date: 2023-04-28 Answering Questions by Meta-Reasoning over Multiple Chains of Thought, Yoran+, Tel Aviv University (w_ Allen Institute for AI), arXiv23 Commentself-consistency #558 のようなvoting basedなアルゴリズムは、複数のCoTのintermediate stepを捨ててしまい、結果だけを採用するが、この研究は複数のCoTの中からquestionに回答するために適切なfactual informationを抽出するMe ... #NeuralNetwork#NLP#Chain-of-Thought#AutomaticPromptEngineering
Issue Date: 2023-04-25 Enhancing LLM Chain-of-Thought w_ Iterative Bootstrapping, Sun+, Xiamen University (w_ MSRA et al.), arXiv23 CommentZero shot CoTからスタートし、正しく問題に回答できるようにreasoningを改善するようにpromptをreviseし続けるループを回す。最終的にループした結果を要約し、それらをプールする。テストセットに対しては、プールの中からNshotをサンプルしinferenceを行う。![imで ... #NeuralNetwork#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-04-27 Large Language Models are Zero-Shot Reasoners, Kojima+, University of Tokyo, NeurIPS22 CommentZero-Shot CoT (Let's think step-by-step.)論文<img width="856" alt="image" src="https://user-images.githubusercontent.com/12249301/234746367-2cd80e23-8dc ... #NeuralNetwork#NLP#Zero/FewShotPrompting#Chain-of-Thought
Issue Date: 2023-04-27 Chain of thought prompting elicits reasoning in large language models, Wei+, Google Research, arXiv22 CommentChain-of-Thoughtを提案した論文。CoTをする上でパラメータ数が100B未満のモデルではあまり効果が発揮されないということは念頭に置いた方が良さそう。 ![image](https://user-images.githubusercontent.com/12249301/234739先 ... #Article#Tutorial#NLP
Issue Date: 2024-11-13 LLM Prompt Tuning Playbook, 2024.11 Comment#1462 も参照のこと ... #Article#NLP#LanguageModel#Repository
Issue Date: 2024-10-20 Prompt-Engineering-Guide, DAIR.AI CommentLLMのsettingから、few-shot, self-consistencyなどのprompting技術、さまざまなタスクの実例などが網羅的にまとまっている ... #Article#NLP#LanguageModel#Post
Issue Date: 2024-09-08 A few prompt engineering tips that Ilya Sutskever picked up at OpenAI, Ilya Sutskever, 2024.09 #Article#ComputerVision#NLP#MulltiModal#AutomaticPromptEngineering
Issue Date: 2023-12-01 multimodal-maestro CommentLarge Multimodal Model (LMM)において、雑なpromptを与えるても自動的に良い感じoutputを生成してくれるっぽい? 以下の例はリポジトリからの引用であるが、この例では、"Find dog." という雑なpromptから、画像中央に位置する犬に[9]というラベルを ... #Article#NLP#LanguageModel#Article
Issue Date: 2023-10-29 LLMのプロンプト技術まとめ Commentざっと見たが現時点で主要なものはほぼ含まれているのでは、という印象実際のプロンプト例が載っているので、理解しやすいかもしれない。 ... #Article#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-13 日本語LLMベンチマークと自動プロンプトエンジニアリング Comment面白かった。特に、promptingによってrinnaとcyberのLLMの順位が逆転しているのが興味深かった。GAを使ったプロンプトチューニングは最近論文も出ていたが、日本語LLMで試されているのは面白かった。 ... #Article#NLP#LanguageModel#Chain-of-Thought#Faithfulness
Issue Date: 2023-07-23 Measuring Faithfulness in Chain-of-Thought Reasoning, Anthropic, 2023 Summary大規模言語モデル(LLMs)は、Chain-of-Thought(CoT)推論を生成することで質問に答える性能を向上させるが、その推論が実際の推論を忠実に表しているかは不明である。本研究では、CoT推論の忠実さを調査し、CoTに介入することでモデルの予測がどのように変化するかを調べる。結果は、モデルのサイズやタスクによってCoTの忠実さが異なることを示唆している。 #Article#Tutorial#NLP#LanguageModel#Article
Issue Date: 2023-05-12 Prompt Engineering vs. Blind Prompting, 2023 Commentexperimentalな手法でprompt engineeringする際のoverview ...
Issue Date: 2024-04-04 Prompting for Numerical Sequences: A Case Study on Market Comment Generation, Masayuki Kawarada+, N_A, arXiv24 SummaryLLMsは、構造化データに対するプロンプト生成に関する研究が進んでいるが、時系列数値データに関する詳細な調査が不足している。本研究では、株価の数値系列を入力として市場コメントを生成するタスクに焦点を当て、さまざまな入力表現を探究する。実験結果は、プログラミング言語に似たプロンプトがより良い結果をもたらすことを示しており、数値系列からテキストを生成する際の効果的なプロンプト作成について示唆を提供している。 CommentData-to-Text系のタスクでは、しばしば数値列がInputとなり、そこからテキストを生成するが、この際にどのようなフォーマットで数値列をPromptingするのが良いかを調査した研究。Pythonリストなどのプログラミング言語に似たプロンプトが高い性能を示し、自然言語やhtml, latex ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2024-03-05 Chain-of-Thought Reasoning Without Prompting, Xuezhi Wang+, N_A, arXiv24 SummaryLLMsの推論能力を向上させるための新しいアプローチに焦点を当てた研究が行われている。この研究では、LLMsがプロンプトなしで効果的に推論できるかどうかを検証し、CoT推論パスをデコーディングプロセスを変更することで引き出す方法を提案している。提案手法は、従来の貪欲なデコーディングではなく、代替トークンを調査することでCoTパスを見つけることができることを示しており、様々な推論ベンチマークで有効性を示している。 Comment以前にCoTを内部的に自動的に実施されるように事前学習段階で学習する、といった話があったと思うが、この研究はデコーディング方法を変更することで、promptingで明示的にinstructionを実施せずとも、CoTを実現するもの、ということだと思われる。 ... #ComputerVision#Pocket#ImageSegmentation#In-ContextLearning
Issue Date: 2023-11-23 Visual In-Context Prompting, Feng Li+, N_A, arXiv23 Summary本研究では、ビジョン領域における汎用的なビジュアルインコンテキストプロンプティングフレームワークを提案します。エンコーダーデコーダーアーキテクチャを使用し、さまざまなプロンプトをサポートするプロンプトエンコーダーを開発しました。さらに、任意の数の参照画像セグメントをコンテキストとして受け取るように拡張しました。実験結果から、提案手法が非凡な参照および一般的なセグメンテーション能力を引き出し、競争力のあるパフォーマンスを示すことがわかりました。 CommentImage Segmentationには、ユーザが与えたプロンプトと共通のコンセプトを持つすべてのオブジェクトをセグメンテーションするタスクと、ユーザの入力の特定のオブジェクトのみをセグメンテーションするタスクがある。従来は個別のタスクごとに、特定の入力方法(Visual Prompt, Image ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-11-19 Contrastive Chain-of-Thought Prompting, Yew Ken Chia+, N_A, arXiv23 Summary言語モデルの推論を改善するために、対照的なchain of thoughtアプローチを提案する。このアプローチでは、有効な推論デモンストレーションと無効な推論デモンストレーションの両方を提供し、モデルが推論を進める際にミスを減らすようにガイドする。また、自動的な方法を導入して対照的なデモンストレーションを構築し、汎化性能を向上させる。実験結果から、対照的なchain of thoughtが一般的な改善手法として機能することが示された。 #Pocket#NLP#LanguageModel#Chain-of-Thought#RetrievalAugmentedGeneration
Issue Date: 2023-11-17 Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models, Wenhao Yu+, N_A, arXiv23 Summary検索補完言語モデル(RALM)は、外部の知識源を活用して大規模言語モデルの性能を向上させるが、信頼性の問題や知識の不足による誤った回答がある。そこで、Chain-of-Noting(CoN)という新しいアプローチを導入し、RALMの頑健性を向上させることを目指す。CoNは、順次の読み取りノートを生成し、関連性を評価して最終的な回答を形成する。ChatGPTを使用してCoNをトレーニングし、実験結果はCoNを装備したRALMが標準的なRALMを大幅に上回ることを示している。特に、ノイズの多いドキュメントにおいてEMスコアで平均+7.9の改善を達成し、知識範囲外のリアルタイムの質問に対する拒否率で+10.5の改善を達成している。 Comment一番重要な情報がappendixに載っているCoNによって、ノイズがあった場合にゲインが大きい。 ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-11-15 Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster, Hongxuan Zhang+, N_A, arXiv23 Summaryこの研究では、FastCoTというフレームワークを提案します。FastCoTは、LLMを使用して並列デコーディングと自己回帰デコーディングを同時に行い、計算リソースを最大限に活用します。また、FastCoTは推論時間を約20%節約し、性能の低下がほとんどないことを実験で示しました。さらに、異なるサイズのコンテキストウィンドウに対しても頑健性を示すことができました。 Comment論文中の図を見たが、全くわからなかった・・・。ちゃんと読まないとわからなそうである。 ... #Pocket#NLP#LanguageModel#AutomaticPromptEngineering
Issue Date: 2023-11-13 Prompt Engineering a Prompt Engineer, Qinyuan Ye+, N_A, arXiv23 Summaryプロンプトエンジニアリングは、LLMsのパフォーマンスを最適化するための重要なタスクであり、本研究ではメタプロンプトを構築して自動的なプロンプトエンジニアリングを行います。改善されたパフォーマンスにつながる推論テンプレートやコンテキストの明示などの要素を導入し、一般的な最適化概念をメタプロンプトに組み込みます。提案手法であるPE2は、さまざまなデータセットやタスクで強力なパフォーマンスを発揮し、以前の自動プロンプトエンジニアリング手法を上回ります。さらに、PE2は意味のあるプロンプト編集を行い、カウンターファクトの推論能力を示します。 #NLP#LanguageModel#QuestionAnswering
Issue Date: 2023-10-30 Re-Reading Improves Reasoning in Language Models, Xiaohan Xu+, N_A, arXiv23 Summary大規模言語モデル(LLMs)において、推論は重要で困難な問題です。従来のアプローチでは、プロンプティング戦略を開発することに焦点が当てられてきましたが、双方向の相互作用や質問の重要性には注意が払われていませんでした。この問題に対処するため、質問の再読という新しいプロンプティング戦略を提案します。再読は、質問情報を再訪することで、LLMsの推論能力を向上させることができます。実験結果は、この手法の効果と汎用性を示しており、LLMsの領域でのその有用性を強調しています。 Comment問題文を2,3回promptで繰り返すだけで、数学のベンチマークとCommonsenseのベンチマークの性能が向上したという非常に簡単なPrompting。self-consistencyなどの他のPromptingとの併用も可能。なぜ性能が向上するかというと、1. LLMはAuporegresこの ... #MachineLearning#Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-24 Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs Non-linear Thinking, Yongqi Tong+, N_A, arXiv23 Summary本研究では、大規模言語モデル(LLMs)に非線形の思考を促すために、新しいプロンプティング方法であるInferential Exclusion Prompting(IEP)を提案する。IEPは、計画を立てて可能な解を推論し、逆推論を行うことで広い視点を得ることができる。IEPは他の手法と比較して複雑な人間の思考プロセスをシミュレートできることを実証し、LLMsのパフォーマンス向上にも貢献することを示した。さらに、Mental-Ability Reasoning Benchmark(MARB)を導入し、LLMsの論理と言語推論能力を評価するための新しいベンチマークを提案した。IEPとMARBはLLMsの研究において有望な方向性であり、今後の進展が期待される。 Comment元論文は読んでいないのだが、CoTが線形的だという主張がよくわからない。CoTはAutoregressiveな言語モデルに対して、コンテキストを自己生成したテキストで利用者の意図した方向性にバイアスをかけて補完させ、利用者が意図した通りのアウトプットを最終的に得るためのテクニック、だと思っていて ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-13 Meta-CoT: Generalizable Chain-of-Thought Prompting in Mixed-task Scenarios with Large Language Models, Anni Zou+, N_A, arXiv23 Summary本研究では、大規模言語モデル(LLMs)を使用して、推論のためのチェーン・オブ・ソート(CoT)プロンプトを生成する方法を提案しています。従来のCoTの方法では、一般的なプロンプトや手作業デモンストレーションに依存していましたが、本研究では入力質問のタイプに基づいて自動的にプロンプトを生成するMeta-CoTを提案しています。Meta-CoTは、10のベンチマーク推論タスクで優れたパフォーマンスを示し、SVAMPでは最先端の結果を達成しました。また、分布外データセットでも安定性と汎用性が確認されました。 Comment色々出てきたがなんかもう色々組み合わせれば最強なんじゃね?って気がしてきた。 ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-12 Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models, Huaixiu Steven Zheng+, N_A, arXiv23 SummaryStep-Back Promptingは、大規模言語モデル(LLMs)を使用して推論の手順をガイドするシンプルなプロンプティング技術です。この技術により、LLMsは具体的な詳細から高レベルの概念や基本原則を抽象化し、正しい推論経路をたどる能力を向上させることができます。実験により、Step-Back PromptingはSTEM、Knowledge QA、Multi-Hop Reasoningなどのタスクにおいて大幅な性能向上が観察されました。具体的には、MMLU Physics and Chemistryで7%、11%、TimeQAで27%、MuSiQueで7%の性能向上が確認されました。 Commentまた新しいのが出た ... #Pocket#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-09 Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution, Chrisantha Fernando+, N_A, arXiv23 Summary本研究では、Promptbreederという自己参照的な自己改善メカニズムを提案し、大規模言語モデル(LLM)の推論能力を向上させるための汎用的なプロンプト戦略を進化させる方法を示しています。Promptbreederは、LLMが自己参照的な方法で進化する変異プロンプトによって制御され、タスクプロンプトの集団を変異させて改善します。この手法は、算術や常識的な推論のベンチマークだけでなく、ヘイトスピーチ分類などの難しい問題に対しても優れた性能を発揮します。 Comment詳細な解説記事: https://aiboom.net/archives/56319APEとは異なり、GAを使う。突然変異によって、予期せぬ良いpromptが生み出されるかも…? ... #Pocket#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-09 Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic, Xufeng Zhao+, N_A, arXiv23 Summary大規模言語モデルの進歩は驚異的だが、多段階の推論には改善の余地がある。大規模言語モデルは知識を持っているが、推論には一貫性がなく、幻覚を示すことがある。そこで、Logical Chain-of-Thought(LogiCoT)というフレームワークを提案し、論理による推論パラダイムの効果を示した。 Commentまーた新しいX of Thoughtが出た。必要そうなら読む。 ... #GraphBased#Pocket#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-09 Graph Neural Prompting with Large Language Models, Yijun Tian+, N_A, arXiv23 Summary本研究では、大規模言語モデル(LLMs)を知識グラフと組み合わせるための新しい手法であるGraph Neural Prompting(GNP)を提案しています。GNPは、標準的なグラフニューラルネットワークエンコーダやクロスモダリティプーリングモジュールなどの要素から構成されており、異なるLLMのサイズや設定において、常識的な推論タスクやバイオメディカル推論タスクで優れた性能を示すことが実験によって示されました。 Comment以下elvis氏のツイートの意訳事前学習されたLLMがKGから有益な知識を学習することを支援する手法を提案。元ツイート: https://arxiv.org/abs/2309.15427しっかり論文を読んでいないが、freezeしたLLMがあった時に、KGから求めたGraph Neural Prom ... #NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-10-07 Large Language Models as Analogical Reasoners, Michihiro Yasunaga+, N_A, arXiv23 Summary本研究では、言語モデルの推論プロセスを自動的にガイドするための新しいプロンプティング手法であるアナロジカルプロンプティングを提案しています。この手法は、関連する過去の経験を引用して新しい問題に取り組む認知プロセスに倣い、問題を解決する前に文脈内で関連する例示や知識を自己生成させるように言語モデルに促します。この手法は、例示のラベリングや検索の必要性を排除し、一般性と適応性を提供します。実験結果は、この手法がさまざまな推論タスクで他の手法を上回ることを示しています。 Comment以下、著者ツイートのざっくり翻訳: https://x.com/michiyasunaga/status/1709582150025240854?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q人間は新しい問題に取り組む時、過去に解いた類義の問題を振り返り、その経験を活用する。これをLLL ... #NLP#LanguageModel#QuestionAnswering#Chain-of-Thought
Issue Date: 2023-09-30 Chain-of-Verification Reduces Hallucination in Large Language Models, Shehzaad Dhuliawala+, N_A, arXiv23 Summary私たちは、言語モデルが根拠のない情報を生成する問題に取り組んでいます。Chain-of-Verification(CoVe)メソッドを開発し、モデルが回答を作成し、検証し、最終的な回答を生成するプロセスを経ることで、幻想を減少させることができることを実験で示しました。 Comment# 概要 ユーザの質問から、Verificationのための質問をplanningし、質問に対して独立に回答を得たうえでオリジナルの質問に対するaggreementを確認し、最終的に生成を実施するPrompting手法 # 評価 ## dataset Wikidata ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-09-04 Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models, Bilgehan Sel+, N_A, arXiv23 Summary大規模言語モデル(LLMs)の推論能力を向上させるために、新しい戦略「Algorithm of Thoughts」を提案している。この戦略では、LLMsをアルゴリズム的な推論経路に導き、わずか1つまたは数個のクエリでアイデアの探索を拡大する。この手法は、以前の単一クエリ手法を上回り、マルチクエリ戦略と同等の性能を発揮する。また、LLMを指導するアルゴリズムを使用することで、アルゴリズム自体を上回るパフォーマンスが得られる可能性があり、LLMが最適化された検索に自己の直感を織り込む能力を持っていることを示唆している。 #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-08-22 Large Language Model Guided Tree-of-Thought, Jieyi Long, N_A, arXiv23 Summaryこの論文では、Tree-of-Thought(ToT)フレームワークを紹介し、自己回帰型の大規模言語モデル(LLM)の問題解決能力を向上させる新しいアプローチを提案しています。ToTは、人間の思考方法に触発された技術であり、複雑な推論タスクを解決するためにツリー状の思考プロセスを使用します。提案手法は、LLMにプロンプターエージェント、チェッカーモジュール、メモリモジュール、およびToTコントローラーなどの追加モジュールを組み込むことで実現されます。実験結果は、ToTフレームワークがSudokuパズルの解決成功率を大幅に向上させることを示しています。 #Pocket#NLP#LanguageModel
Issue Date: 2023-08-22 Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding, Yuxi Xie+, N_A, arXiv23 Summary私たちは、大規模言語モデル(LLMs)を使用して、推論の品質と多様性を向上させるための効果的なプロンプティングアプローチを提案しました。自己評価によるガイド付き確率的ビームサーチを使用して、GSM8K、AQuA、およびStrategyQAのベンチマークで高い精度を達成しました。また、論理の失敗を特定し、一貫性と堅牢性を向上させることもできました。詳細なコードはGitHubで公開されています。 Comment ... #Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-08-22 Graph of Thoughts: Solving Elaborate Problems with Large Language Models, Maciej Besta+, N_A, arXiv23 Summary私たちは、Graph of Thoughts(GoT)というフレームワークを紹介しました。これは、大規模言語モデル(LLMs)のプロンプティング能力を進化させるもので、任意のグラフとしてモデル化できることが特徴です。GoTは、思考の組み合わせやネットワーク全体の本質の抽出、思考の強化などを可能にします。さまざまなタスクで最先端の手法に比べて利点を提供し、LLMの推論を人間の思考に近づけることができます。 CommentChain of Thought #551 => Self-consistency #558 => Thought Decomposition #1013 => Tree of Thoughts #684 Tree of Thought #1015 => Graph of Thoug ... #Pocket#NLP#LanguageModel
Issue Date: 2023-08-12 Metacognitive Prompting Improves Understanding in Large Language Models, Yuqing Wang+, N_A, arXiv23 Summary本研究では、LLMsにメタ認知プロンプト(MP)を導入し、人間の内省的な推論プロセスを模倣することで、理解能力を向上させることを目指しています。実験結果は、MPを備えたPaLMが他のモデルに比べて優れたパフォーマンスを示しており、MPが既存のプロンプト手法を上回ることを示しています。この研究は、LLMsの理解能力向上の可能性を示し、人間の内省的な推論を模倣することの利点を強調しています。 CommentCoTより一貫して性能が高いので次のデファクトになる可能性あり ... #Pocket#NLP#LanguageModel
Issue Date: 2023-08-07 Do Multilingual Language Models Think Better in English?, Julen Etxaniz+, N_A, arXiv23 Summaryself-translateは、マルチリンガル言語モデルの少数ショット翻訳能力を活用する新しいアプローチであり、外部の翻訳システムの必要性を克服する。実験結果は、self-translateが直接推論を上回る性能を示し、非英語の言語でプロンプトされた場合にも有効であることを示している。コードはhttps://github.com/juletx/self-translateで利用可能。 Comment参考: https://twitter.com/imai_eruel/status/1687735268311511040?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q ... #Efficiency/SpeedUp#MachineLearning#Pocket
Issue Date: 2023-07-24 Batch Prompting: Efficient Inference with Large Language Model APIs, Zhoujun Cheng+, N_A, arXiv23 Summary大規模な言語モデル(LLMs)を効果的に使用するために、バッチプロンプティングという手法を提案します。この手法は、LLMが1つのサンプルではなくバッチで推論を行うことを可能にし、トークンコストと時間コストを削減しながらパフォーマンスを維持します。さまざまなデータセットでの実験により、バッチプロンプティングがLLMの推論コストを大幅に削減し、良好なパフォーマンスを達成することが示されました。また、バッチプロンプティングは異なる推論方法にも適用できます。詳細はGitHubのリポジトリで確認できます。 Comment10種類のデータセットで試した結果、バッチにしても性能は上がったり下がったりしている。著者らは類似した性能が出ているので、コスト削減になると結論づけている。Batch sizeが大きくなるに連れて性能が低下し、かつタスクの難易度が高いとパフォーマンスの低下が著しいことが報告されている。また、cont ... #Survey#NLP#LanguageModel#Reasoning
Issue Date: 2023-07-18 Reasoning with Language Model Prompting: A Survey, ACL23 Summary本論文では、推論に関する最新の研究について包括的な調査を行い、初心者を支援するためのリソースを提供します。また、推論能力の要因や将来の研究方向についても議論します。リソースは定期的に更新されています。 #NaturalLanguageGeneration#Controllable#NLP
Issue Date: 2023-07-15 Tailor: A Soft-Prompt-Based Approach to Attribute-Based Controlled Text Generation, ACL23 Summary属性ベースの制御されたテキスト生成(CTG)では、望ましい属性を持つ文を生成することが目指されている。従来の手法では、ファインチューニングや追加の属性分類器を使用していたが、ストレージと推論時間の増加が懸念されていた。そこで、本研究では効率的なパラメータを使用した属性ベースのCTGを提案している。具体的には、各属性を事前学習された連続ベクトルとして表現し、固定された事前学習言語モデルをガイドして属性を満たす文を生成する。さらに、2つの解決策を提供して、組み合わせを強化している。実験の結果、追加のトレーニングパラメータのみで効果的な改善が実現できることが示された。 #InformationRetrieval#LearningToRank#LanguageModel
Issue Date: 2023-07-11 Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting, Zhen Qin+, N_A, arXiv23 SummaryLLMsを使用してドキュメントをランキングする際に、Pairwise Ranking Prompting(PRP)という新しい技術を提案する。PRPは、LLMsへの負荷を軽減し、最先端のランキングパフォーマンスを達成することができる。具体的には、20Bパラメータを持つFlan-UL2モデルに基づくPRPは、商用のGPT-4に基づく従来の手法を上回る結果を示した。さらに、PRPのバリアントを提案し、効率を改善することができることを示した。PRPは生成とスコアリングのLLM APIの両方をサポートし、入力の順序に対して無感度であることも示された。 Commentopen source LLMをスタンダードなベンチマークでSoTAを達成できるようなprompting技術を提案 ... #Survey#LanguageModel
Issue Date: 2023-07-11 A Survey of Large Language Models, Wayne Xin Zhao+, N_A, arXiv23 Summary言語モデリングの進化により、大規模言語モデル(LLM)が注目されている。LLMは、事前学習、適応調整、利用、容量評価の4つの側面に焦点を当てて研究されており、AIアルゴリズムの開発と使用方法に革新をもたらす可能性がある。本調査では、LLMの最近の進展と将来の方向性についてレビューし、残された課題についても議論する。 Comment現状で最も詳細なLLMのサーベイ600個のリファレンス、LLMのコレクション、promptingのtips、githubリポジトリなどがまとめられている ... #Pocket#NLP#LanguageModel
Issue Date: 2023-05-20 Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Shunyu Yao+, N_A, arXiv23 Summary言語モデルの推論には制限があり、探索や戦略的先読みが必要なタスクには不十分である。そこで、Tree of Thoughts(ToT)という新しいフレームワークを導入し、Chain of Thoughtアプローチを一般化して、意思決定を行うことができるようにした。ToTにより、言語モデルは複数の異なる推論パスを考慮して、次の行動を決定することができる。ToTは、Game of 24、Creative Writing、Mini Crosswordsなどのタスクにおいて、言語モデルの問題解決能力を大幅に向上させることができることを示している。 CommentSelf Concistencyの次Non trivialなプランニングと検索が必要な新たな3つのタスクについて、CoT w/ GPT4の成功率が4%だったところを、ToTでは74%を達成論文中の表ではCoTのSuccessRateが40%と書いてあるような? ... #NLP#LanguageModel#QuestionAnswering#TheoryOfMind
Issue Date: 2023-04-28 Boosting Theory-of-Mind Performance in Large Language Models via Prompting, Moghaddam+, Johns Hopkins University, arXiv23 CommentLLMはTheory-of-mind reasoningタスクが苦手なことが知られており、特にzero shotでは非常にパフォーマンスが低かった。ToMタスクとは、エージェントの信念、ゴール、メンタルstate、エージェントが何を知っているか等をトラッキングすることが求められるタスクのこと。このよ ... #NLP#LanguageModel
Issue Date: 2023-04-28 Exploring the Curious Case of Code Prompts, Zhang+, University of Pennsylvania, arXiv23 CommentコードベースのLLMに対して、reasoningタスクを解かせる際には、promptもコードにすると10パーセント程度性能上がる場合があるよ、という研究。![image](https://user-images.githubusercontent.com/12249301/235037840-1fた ... #NLP#LanguageModel#QuestionAnswering#Chain-of-Thought
Issue Date: 2023-04-28 Answering Questions by Meta-Reasoning over Multiple Chains of Thought, Yoran+, Tel Aviv University (w_ Allen Institute for AI), arXiv23 Commentself-consistency #558 のようなvoting basedなアルゴリズムは、複数のCoTのintermediate stepを捨ててしまい、結果だけを採用するが、この研究は複数のCoTの中からquestionに回答するために適切なfactual informationを抽出するMe ... #NeuralNetwork#NLP#Chain-of-Thought#AutomaticPromptEngineering
Issue Date: 2023-04-25 Enhancing LLM Chain-of-Thought w_ Iterative Bootstrapping, Sun+, Xiamen University (w_ MSRA et al.), arXiv23 CommentZero shot CoTからスタートし、正しく問題に回答できるようにreasoningを改善するようにpromptをreviseし続けるループを回す。最終的にループした結果を要約し、それらをプールする。テストセットに対しては、プールの中からNshotをサンプルしinferenceを行う。![imで ... #NeuralNetwork#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-04-27 Large Language Models are Zero-Shot Reasoners, Kojima+, University of Tokyo, NeurIPS22 CommentZero-Shot CoT (Let's think step-by-step.)論文<img width="856" alt="image" src="https://user-images.githubusercontent.com/12249301/234746367-2cd80e23-8dc ... #NeuralNetwork#NLP#Zero/FewShotPrompting#Chain-of-Thought
Issue Date: 2023-04-27 Chain of thought prompting elicits reasoning in large language models, Wei+, Google Research, arXiv22 CommentChain-of-Thoughtを提案した論文。CoTをする上でパラメータ数が100B未満のモデルではあまり効果が発揮されないということは念頭に置いた方が良さそう。 ![image](https://user-images.githubusercontent.com/12249301/234739先 ... #Article#Tutorial#NLP
Issue Date: 2024-11-13 LLM Prompt Tuning Playbook, 2024.11 Comment#1462 も参照のこと ... #Article#NLP#LanguageModel#Repository
Issue Date: 2024-10-20 Prompt-Engineering-Guide, DAIR.AI CommentLLMのsettingから、few-shot, self-consistencyなどのprompting技術、さまざまなタスクの実例などが網羅的にまとまっている ... #Article#NLP#LanguageModel#Post
Issue Date: 2024-09-08 A few prompt engineering tips that Ilya Sutskever picked up at OpenAI, Ilya Sutskever, 2024.09 #Article#ComputerVision#NLP#MulltiModal#AutomaticPromptEngineering
Issue Date: 2023-12-01 multimodal-maestro CommentLarge Multimodal Model (LMM)において、雑なpromptを与えるても自動的に良い感じoutputを生成してくれるっぽい? 以下の例はリポジトリからの引用であるが、この例では、"Find dog." という雑なpromptから、画像中央に位置する犬に[9]というラベルを ... #Article#NLP#LanguageModel#Article
Issue Date: 2023-10-29 LLMのプロンプト技術まとめ Commentざっと見たが現時点で主要なものはほぼ含まれているのでは、という印象実際のプロンプト例が載っているので、理解しやすいかもしれない。 ... #Article#NLP#AutomaticPromptEngineering
Issue Date: 2023-10-13 日本語LLMベンチマークと自動プロンプトエンジニアリング Comment面白かった。特に、promptingによってrinnaとcyberのLLMの順位が逆転しているのが興味深かった。GAを使ったプロンプトチューニングは最近論文も出ていたが、日本語LLMで試されているのは面白かった。 ... #Article#NLP#LanguageModel#Chain-of-Thought#Faithfulness
Issue Date: 2023-07-23 Measuring Faithfulness in Chain-of-Thought Reasoning, Anthropic, 2023 Summary大規模言語モデル(LLMs)は、Chain-of-Thought(CoT)推論を生成することで質問に答える性能を向上させるが、その推論が実際の推論を忠実に表しているかは不明である。本研究では、CoT推論の忠実さを調査し、CoTに介入することでモデルの予測がどのように変化するかを調べる。結果は、モデルのサイズやタスクによってCoTの忠実さが異なることを示唆している。 #Article#Tutorial#NLP#LanguageModel#Article
Issue Date: 2023-05-12 Prompt Engineering vs. Blind Prompting, 2023 Commentexperimentalな手法でprompt engineeringする際のoverview ...