#Pocket #NLP #LanguageModel #Reasoning #Test-Time Scaling #Decoding #TreeSearch
Issue Date: 2025-10-08 [Paper Note] MITS: Enhanced Tree Search Reasoning for LLMs via Pointwise Mutual Information, Jiaxi Li+, arXiv'25, 2025.10 GPT Summary- 相互情報量ツリー探索(MITS)を提案し、推論経路の評価と探索を効率化。PMIに基づくスコアリング関数を用い、計算コストを抑えつつ優れた推論性能を実現。エントロピーに基づく動的サンプリング戦略でリソースを最適配分し、重み付き投票方式で最終予測を行う。MITSは多様なベンチマークでベースラインを上回る結果を示した。 Comment

元ポスト:

Loading…


#Pocket #NLP #LanguageModel #ReinforcementLearning #read-later #RLVR #On-Policy #One-Line Notes #ReplayBuffer #TreeSearch
Issue Date: 2025-10-04 [Paper Note] DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search, Fang Wu+, arXiv'25, 2025.09 GPT Summary- DeepSearchは、RLVRトレーニングにMonte Carlo Tree Searchを統合し、体系的な探索を可能にするフレームワーク。これにより、限られたロールアウトに依存せず、重要な推論経路を見逃さない。実験では、62.95%の平均精度を達成し、1.5B推論モデルで新たな最先端を確立。戦略的な探索の重要性を示し、RLVR手法の進展に向けた新たな方向性を提供。 Comment

元ポスト:

Loading…

最近はRL時の探索空間を増やす取り組みが増えてきているように感じる。

- Replay BufferがPolicy Gradientで使えない理由, piqcy, 2019.03

にもあるように基本的にオンポリシーRLではリプレイバッファを使えないので何らかの工夫が必要、といった話があるが、この研究ではGRPOを前提としつつリプレイバッファを活用する枠組みとなっているようなので、どのような工夫が行われているのだろうか。勉強したい。

所見と解説:

Loading…


#Pocket #NLP #Dataset #LanguageModel #Evaluation #Financial
Issue Date: 2025-09-21 [Paper Note] FinSearchComp: Towards a Realistic, Expert-Level Evaluation of Financial Search and Reasoning, Liang Hu+, arXiv'25, 2025.09 GPT Summary- FinSearchCompは、金融検索と推論のための初の完全オープンソースエージェントベンチマークであり、時間に敏感なデータ取得や複雑な歴史的調査を含む3つのタスクで構成されています。70人の金融専門家によるアノテーションと厳格な品質保証を経て、635の質問が用意され、21のモデルが評価されました。Grok 4とDouBaoがそれぞれグローバルおよび大中華圏でトップの精度を示し、ウェブ検索と金融プラグインの活用が結果を改善することが確認されました。FinSearchCompは、現実のアナリストタスクに基づく高難易度のテストベッドを提供します。 Comment

元ポスト:

Loading…


#NeuralNetwork #MachineLearning #Pocket #Coding #NeurIPS #Encoder-Decoder Issue Date: 2025-09-21 [Paper Note] Searching Latent Program Spaces, Matthew V Macfarlane+, NeurIPS'25, 2024.11 GPT Summary- 新しいスキルを効率的に習得し、一般化するためのLatent Program Network(LPN)を提案。LPNは、入力を出力にマッピングする潜在空間を学習し、テスト時に勾配を用いて探索。シンボリックアプローチの適応性とニューラル手法のスケーラビリティを兼ね備え、事前定義されたDSLを不要にする。ARC-AGIベンチマークでの実験により、LPNは分布外タスクでの性能を2倍に向上させることが示された。 Comment

元ポスト:

Loading…


#Pocket #NLP #LanguageModel #LLMAgent #ScientificDiscovery #read-later #TreeSearch Issue Date: 2025-09-10 [Paper Note] An AI system to help scientists write expert-level empirical software, Eser Aygün+, arXiv'25 GPT Summary- AIシステムを用いて質の指標を最大化する専門的な科学ソフトウェアを生成。大規模言語モデルと木探索を活用し、複雑な研究アイデアを統合。バイオインフォマティクスや疫学の分野で新しい手法を発見し、既存のモデルを上回る成果を達成。多様なタスクに対する新しい解決策を提供し、科学的進歩を加速することを目指す。 Comment

元ポスト:

Loading…


#Embeddings #Analysis #InformationRetrieval #Pocket Issue Date: 2025-09-01 [Paper Note] On the Theoretical Limitations of Embedding-Based Retrieval, Orion Weller+, arXiv'25 GPT Summary- ベクトル埋め込みは検索タスクにおいて重要な役割を果たしているが、シンプルなクエリでも理論的限界に直面する可能性があることを示す。特に、埋め込みの次元が文書のトップ-kサブセットの数を制限し、k=2でもこの制限が成り立つことを実証。新たに作成したデータセット「LIMIT」では、最先端モデルでさえ失敗することが観察され、既存の埋め込みモデルの限界を明らかにし、今後の研究の必要性を提唱している。 Comment

元ポスト:

Loading…


#EfficiencyImprovement #Controllable #Pocket #NLP #LanguageModel #Test-Time Scaling #Decoding Issue Date: 2025-08-30 [Paper Note] Skip a Layer or Loop it? Test-Time Depth Adaptation of Pretrained LLMs, Ziyue Li+, arXiv'25 GPT Summary- 事前学習済みのLLMの層をモジュールとして操作し、各サンプルに最適なアーキテクチャを構築する手法を提案。モンテカルロ木探索を用いて、数学および常識推論のベンチマークで最適な層の連鎖(CoLa)を特定。CoLaは柔軟で動的なアーキテクチャを提供し、推論効率を改善する可能性を示唆。75%以上の正しい予測に対して短いCoLaを見つけ、60%以上の不正確な予測を正すことができることが明らかに。固定アーキテクチャの限界を克服する道を開く。 Comment

解説:

Loading…

事前学習済み言語モデルのforward pathにおける各layerをbuilding blocksとみなして、入力に応じてスキップ、あるいは再帰的な利用をMCTSによって選択することで、test time時のモデルの深さや、モデルの凡化性能をタスクに対して適用させるような手法を提案している模様。モデルのパラメータの更新は不要。k, r ∈ {1,2,3,4} の範囲で、"k個のlayerをskip"、あるいはk個のlayerのブロックをr回再帰する、とすることで探索範囲を限定的にしtest時の過剰な計算を抑止している。また、MCTSにおけるsimulationの回数は200回。length penaltyを大きくすることでcompactなforward pathになるように調整、10%の確率でまだ探索していない子ノードをランダムに選択することで探索を促すようにしている。オリジナルと比較して実行時間がどの程度増えてしまうのか?に興味があったが、モデルの深さという観点で推論効率は考察されているように見えたが、実行時間という観点ではざっと見た感じ記載がないように見えた。

<img width="948" height="301" alt="Image" src=" <a href="https://github.com/user-attachments/assets/0a03cdc2-141b-40a1-a11e-9560187ff7b6"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/0a03cdc2-141b-40a1-a11e-9560187ff7b6"</a> />

以下の広範なQA、幅広い難易度を持つ数学に関するデータで評価(Appendix Bに各データセットごとに500 sampleを利用と記載がある)をしたところ、大幅に性能が向上している模様。ただし、8B程度のサイズのモデルでしか実験はされていない。
- [Paper Note] Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge, Peter Clark+, arXiv'18
- [Paper Note] DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving, Yuxuan Tong+, NeurIPS'24
<img width="986" height="682" alt="Image" src=" <a href="https://github.com/user-attachments/assets/c6d88c0a-4ae0-41b7-8526-17d041692f49"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/c6d88c0a-4ae0-41b7-8526-17d041692f49"</a> />

関連:
- [Paper Note] Looped Transformers are Better at Learning Learning Algorithms, Liu Yang+, ICLR'24
- [Paper Note] Looped Transformers for Length Generalization, Ying Fan+, ICLR'25
- [Paper Note] Universal Transformers, Mostafa Dehghani+, ICLR'19
- [Paper Note] Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation, Sangmin Bae+, arXiv'25



#EfficiencyImprovement #Pocket #NLP #LanguageModel #ReinforcementLearning #LLMAgent #KeyPoint Notes #Reference Collection Issue Date: 2025-08-14 [Paper Note] Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL, Jiaxuan Gao+, arXiv'25 GPT Summary- ASearcherは、LLMベースの検索エージェントの大規模なRLトレーニングを実現するオープンソースプロジェクトであり、高効率な非同期RLトレーニングと自律的に合成された高品質なQ&Aデータセットを用いて、検索能力を向上させる。提案されたエージェントは、xBenchで46.7%、GAIAで20.8%の改善を達成し、長期的な検索能力を示した。モデルとデータはオープンソースで提供される。 Comment

元ポスト:

Loading…

著者ポスト:

Loading…

解説ポスト:

Loading…

関連ベンチマーク:
- [Paper Note] xbench: Tracking Agents Productivity Scaling with Profession-Aligned Real-World Evaluations, Kaiyuan Chen+, arXiv'25
- GAIA: a benchmark for General AI Assistants, Grégoire Mialon+, N/A, arXiv'23
- [Paper Note] Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation, Satyapriya Krishna+, N/A, NAACL'25

既存のモデルは <= 10 turnsのデータで学習されており、大規模で高品質なQAデータが不足している問題があったが、シードQAに基づいてQAを合成する手法によって1.4万シードQAから134kの高品質なQAを合成した(うち25.6kはツール利用が必要)。具体的には、シードのQAを合成しエージェントがQAの複雑度をiterationをしながら向上させていく手法を提案。事実情報は常にverificationをされ、合成プロセスのiterationの中で保持され続ける。個々のiterationにおいて、現在のQAと事実情報に基づいて、エージェントは
- Injection: 事実情報を新たに注入しQAをよりリッチにすることで複雑度を上げる
- Fuzz: QA中の一部の詳細な情報をぼかすことで、不確実性のレベルを向上させる。
の2種類の操作を実施する。その上で、QAに対してQuality verificationを実施する:
- Basic Quality: LLMでqualityを評価する
- Difficulty Measurement: LRMによって、複数の回答候補を生成する
- Answer Uniqueness: Difficulty Measurementで生成された複数の解答情報に基づいて、mismatched answersがvalid answerとなるか否かを検証し、正解が単一であることを担保する

<img width="907" height="561" alt="Image" src=" <a href="https://github.com/user-attachments/assets/d020fc8f-b1da-4425-981a-6759cba5824b"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/d020fc8f-b1da-4425-981a-6759cba5824b"</a> />

また、複雑なタスク、特にtool callsが非常に多いタスクについては、多くのターン数(long trajectories)が必要となるが、既存のバッチに基づいた学習手法ではlong trajectoriesのロールアウトをしている間、他のサンプルの学習がブロックされてしまい学習効率が非常に悪いので、バッチ内のtrajectoryのロールアウトとモデルの更新を分離(ロールアウトのリクエストが別サーバに送信されサーバ上のInference Engineで非同期に実行され、モデルをアップデートする側は十分なtrajectoryがバッチ内で揃ったらパラメータを更新する、みたいな挙動?)することでIdleタイムを無くすような手法を提案した模様。

<img width="873" height="466" alt="Image" src=" <a href="https://github.com/user-attachments/assets/65d7e7b1-25fb-4288-a85e-07ae7a5eea2f"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/65d7e7b1-25fb-4288-a85e-07ae7a5eea2f"</a> />

既存の手法ベンチマークの性能は向上している。学習が進むにつれて、trajectory中のURL参照回数やsearch query数などが増大していく曲線は考察されている。他モデルと比較して、より多いターン数をより高い正確性を以って実行できるといった定量的なデータはまだ存在しないように見えた。

<img width="891" height="778" alt="Image" src=" <a href="https://github.com/user-attachments/assets/70644da8-b862-4bcb-bb05-d915c815b885"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/70644da8-b862-4bcb-bb05-d915c815b885"</a> />



#InformationRetrieval #Pocket #NLP #Dataset #LanguageModel Issue Date: 2025-06-08 [Paper Note] Search Arena: Analyzing Search-Augmented LLMs, Mihran Miroyan+, arXiv'25 GPT Summary- 検索強化型LLMsに関する「Search Arena」という大規模な人間の好みデータセットを紹介。24,000以上のマルチターンユーザーインタラクションを含み、ユーザーの好みが引用数や引用元に影響されることを明らかにした。特に、コミュニティ主導の情報源が好まれる傾向があり、静的な情報源は必ずしも信頼されない。検索強化型LLMsの性能を評価した結果、非検索設定でのパフォーマンス向上が確認されたが、検索設定ではパラメトリック知識に依存すると品質が低下することが分かった。このデータセットはオープンソースとして提供されている。 Comment

元ポスト:

Loading…


#Embeddings #InformationRetrieval #NLP #STS (SemanticTextualSimilarity) #ICLR Issue Date: 2025-01-28 SoftMatcha: A Fast and Soft Pattern Matcher for Billion-Scale Corpus Searches, Deguchi+, ICLR'25 Comment

ICLR2025にacceptされた模様
https://openreview.net/forum?id=Q6PAnqYVpo

openreview: https://openreview.net/forum?id=Q6PAnqYVpo

https://arxiv.org/abs/2503.03703



#Metrics #Pocket #NLP #LanguageModel #Evaluation #Factuality #LongSequence Issue Date: 2025-08-08 [Paper Note] VERISCORE: Evaluating the factuality of verifiable claims in long-form text generation, Yixiao Song+, arXiv'24 GPT Summary- VERISCOREという新しい指標を提案し、検証可能な主張と検証不可能な主張の両方を含む長文生成タスクに対応。人間評価ではVERISCOREが他の方法よりも理にかなっていることが確認され、16のモデルを評価した結果、GPT-4oが最も優れた性能を示したが、オープンウェイトモデルも差を縮めていることが分かった。また、異なるタスク間でVERISCOREの相関がないことから、事実性評価の拡張が必要であることを示唆している。 Comment

LLMの応答からverifiableなclaimのみを抽出し、それを外部の検索エンジン(google検索)のクエリとして入力。検索結果からclaimがsupportされるか否かをLLMによって判断しスコアリングする。
image



#InformationRetrieval #Pocket #NLP #Dataset #Evaluation #ACL Issue Date: 2023-05-22 QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations, Chaitanya Malaviya+, N_A, ACL'23 GPT Summary- QUESTデータセットは、交差、和、差などの集合演算を暗黙的に指定するクエリを生成するために、選択的な情報ニーズを定式化することによって構築されました。このデータセットは、Wikipediaのドキュメントに対応するエンティティのセットにマップされ、クエリで言及される複数の制約を対応するドキュメントの証拠と一致させ、さまざまな集合演算を正しく実行することをモデルに求めます。クラウドワーカーによって言い換えられ、自然さと流暢さがさらに検証されたクエリは、いくつかの現代的な検索システムにとって苦戦することがわかりました。 #NeuralNetwork #InformationRetrieval #MultitaskLearning #QueryClassification #WebSearch #NAACL Issue Date: 2018-02-05 [Paper Note] Representation Learning Using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval, Liu+, NAACL-HLT'15 Comment

クエリ分類と検索をNeural Netを用いてmulti-task learningする研究

分類(multi-class classification)とランキング(pairwise learning-to-rank)という異なる操作が必要なタスクを、multi task learningの枠組みで組み合わせた(初めての?)研究。

この研究では分類タスクとしてクエリ分類、ランキングタスクとしてWeb Searchを扱っている。



モデルの全体像は下図の通り。

image

shared layersの部分で、クエリとドキュメントを一度共通の空間に落とし、そのrepresentationを用いて、l3においてtask-specificな空間に写像し各タスクを解いている。

分類タスクを解く際には、outputはsigmoidを用いる(すなわち、output layerのユニット数はラベル数分存在する)。

Web Searchを解く際には、クエリとドキュメントをそれぞれtask specificな空間に別々に写像し、それらのcosine similarityをとった結果にsoftmaxをかけることで、ドキュメントのrelevance scoreを計算している。

image

学習時のアルゴリズムは上の通り。各タスクをランダムにpickし、各タスクの目的関数が最適化されるように思いをSGDで更新する、といったことを繰り返す。



なお、alternativeとして、下図のようなネットワーク構造を考えることができるが(クエリのrepresentationのみがシェアされている)、このモデルの場合はweb searchがあまりうまくいかなかった模様。

image

理由としては、unbalancedなupdates(クエリパラメータのupdateがdocumentよりも多くアップデートされること)が原因ではないかと言及しており、multi-task modelにおいては、パラメータをどれだけシェアするかはネットワークをデザインする上で重要な選択であると述べている。

評価で用いるデータの統計量は下記の通り。

image

1年分の検索ログから抽出。クエリ分類(各クラスごとにbinary)、および文書のrelevance score(5-scale)は人手で付与されている。

クエリ分類はROC曲線のAUCを用い、Web SearchではNDCG (Normalized Discounted Cumulative Gain) を用いた。

image

image

multi task learningをした場合に、性能が向上している。



また、ネットワークが学習したsemantic representationとSVMを用いて、domain adaptationの実験(各クエリ分類のタスクは独立しているので、一つのクエリ分類のデータを選択しsemantic representationをtrainし、学習したrepresentationを別のクエリ分類タスクに適用する)も行なっており、訓練事例数が少ない場合に有効に働くことを確認(Letter3gramとWord3gramはnot trained/adapted)。

image



image

また、SemanticRepresentationへ写像する行列W1のパラメータの初期化の仕方と、サンプル数の変化による性能の違いについても実験。DNN1はW1をランダムに初期化、DNN2は別タスク(別のクエリ分類タスク)で学習したW1でfixする手法。

訓練事例が数百万程度ある場合は、DNN1がもっとも性能がよく、数千の訓練事例数の場合はsemantic representationを用いたSVMがもっともよく、midium-rangeの訓練事例数の場合はDNN2がもっとも性能がよかったため、データのサイズに応じて手法を使い分けると良い。

データセットにおいて、クエリの長さや文書の長さが記述されていないのがきになる。



#Single #PersonalizedDocumentSummarization #NLP Issue Date: 2017-12-28 [Paper Note] Incremental Personalised Summarisation with Novelty Detection, Campana+, FQAS'09, 2009.10 Comment

https://link.springer.com/content/pdf/10.1007/978-3-642-04957-6_55.pdf



#Multi #PersonalizedDocumentSummarization #NLP #NAACL Issue Date: 2017-12-28 [Paper Note] WebInEssence: A Personalized Web-Based Multi-Document Summarization and Recommendation System, Radev+, NAACL'01, 2001.06 Comment

・ドキュメントはオフラインでクラスタリングされており,各クラスタごとにmulti-document summarizationを行うことで,

ユーザが最も興味のあるクラスタを同定することに役立てる.あるいは検索結果のページのドキュメントの要約を行う.

要約した結果には,extractした文の元URLなどが付与されている.

・Personalizationをかけるためには,ユーザがドキュメントを選択し,タイトル・ボディなどに定数の重みをかけて,その情報を要約に使う.

・特に評価していない.システムのoutputを示しただけ.



#DocumentSummarization #InformationRetrieval #NLP #SIGIR #Selected Papers/Blogs Issue Date: 2018-01-17 [Paper Note] The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries, Carbonell+, SIGIR'98 Comment

Maximal Marginal Relevance (MMR) 論文。

検索エンジンや文書要約において、文書/文のランキングを生成する際に、既に選んだ文書と類似度が低く、かつqueryとrelevantな文書をgreedyに選択していく手法を提案。

ILPによる定式化が提案される以前のMulti Document Summarization (MDS) 研究において、冗長性の排除を行う際には典型的な手法。



#Article #CollaborativeFiltering #InformationRetrieval #RelevanceFeedback #WebSearch #Personalization Issue Date: 2023-04-28 Adaptive Web Search Based on User Profile Constructed without Any Effort from Users, Sugiyama+, NAIST, WWW’04 Comment

検索結果のpersonalizationを初めてuser profileを用いて実現した研究

user profileはlong/short term preferenceによって構成される。

- long term: さまざまなソースから取得される

- short term: 当日のセッションの中だけから収集される



① browsing historyの活用

- browsing historyのTFから求め Profile = P_{longterm} + P_{shortterm}とする



② Collaborative Filtering (CF) の活用

- user-item matrixではなく、user-term matrixを利用

- userの未知のterm-weightをCFで予測する

- => missing valueのterm weightが予測できるのでprofileが充実する



実験結果

- 検証結果(googleの検索結果よりも提案手法の方が性能が良い)

- 検索結果のprecision向上にlong/short term preferenceの両方が寄与

- longterm preferenceの貢献の方が大きいが、short termも必要(interpolation weight 0.6 vs. 0.4)

- short termにおいては、その日の全てのbrowsing historyより、現在のセッションのterm weightをより考慮すべき(interpolation weight 0.2 vs. 0.8)



#Article #Embeddings #InformationRetrieval #Library #Repository Issue Date: 2023-04-27 Awesome Vector Search Engine Comment

ベクトルの類似度を測るサービスやライブラリ等がまとまったリポジトリ