Catastrophic Forgetting

#Pocket #NLP #LanguageModel #GenerativeAdversarialNetwork #PEFT(Adaptor/LoRA) #PostTraining #read-later
Issue Date: 2025-10-06 [Paper Note] Self-Evolving LLMs via Continual Instruction Tuning, Jiazheng Kang+, arXiv'25, 2025.09 GPT Summary- MoE-CLは、産業環境における大規模言語モデルの継続学習を支援するためのフレームワークで、タスクごとのLoRA専門家と共有LoRA専門家を用いて知識の保持とクロスタスクの一般化を実現。敵対的学習により、タスクに関連する情報のみを通過させる識別器を統合し、自己進化を促進。実験結果では、Tencent Videoプラットフォームでの手動レビューコストを15.3%削減し、実用性が示された。 Comment

元ポスト:

Loading…

continual instruction tuning... そしてGAN!?

タスク固有の知識を備えたLoRAと、タスク間で共有されるLoRAがクロスタスクの転移を促し、それぞれをMoEにおけるexpertsとして扱うことで、inputに対して動的に必要なLoRA expertsを選択する。このとき、Task Classifier(Adversarialに訓練する)でタスクに関係ない情報が順伝搬されないようにフィルタリングするっぽい?(GANをText Classifierの学習に使い、Classifierの情報を用いることで共有/タスク固有のLoRA expertsが学習されるように促すようだが、細かくどうやるかは読まないとわからない)。

ドメイン固有のタスクとデータに対して、さまざまなアダプターを追加していき、catastrophic forgettingを防ぎながら、扱えるタスクの幅が広がっていく枠組み自体は面白そう(学習は果たして安定するのだろうか)。

image



#Analysis #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #On-Policy
Issue Date: 2025-09-06 [Paper Note] RL's Razor: Why Online Reinforcement Learning Forgets Less, Idan Shenfeld+, arXiv'25 GPT Summary- 強化学習(RL)と教師ありファインチューニング(SFT)の比較により、RLが以前の知識をより良く保持することが明らかに。忘却の程度は分布のシフトによって決まり、KLダイバージェンスで測定される。RLは新しいタスクに対してKL最小解にバイアスがかかる一方、SFTは任意の距離に収束する可能性がある。実験を通じて、RLの更新が小さなKL変化をもたらす理由を理論的に説明し、「RLの剃刀」と呼ぶ原則を提唱。 Comment

元ポスト:

Loading…

所見:

Loading…

ポイント解説:

Loading…


#Pretraining #Pocket #NLP
Issue Date: 2025-01-02 Examining Forgetting in Continual Pre-training of Aligned Large Language Models, Chen-An Li+, arXiv'24 GPT Summary- LLMの継続的な事前学習がファインチューニングされたモデルに与える影響を調査し、壊滅的な忘却の現象を評価。出力形式や知識、信頼性の次元での実験結果が、特に繰り返しの問題における忘却の課題を明らかにする。 Comment

元ポスト:

Loading…


#ComputerVision #MachineLearning #Pocket #Supervised-FineTuning (SFT) #InstructionTuning #PEFT(Adaptor/LoRA) Issue Date: 2024-11-12 Online-LoRA: Task-free Online Continual Learning via Low Rank Adaptation, Xiwen Wei+, arXiv'24 GPT Summary- 破滅的忘却に対処するため、タスクフリーのオンライン継続学習(OCL)フレームワークOnline-LoRAを提案。リハーサルバッファの制約を克服し、事前学習済みビジョントランスフォーマー(ViT)モデルをリアルタイムで微調整。新しいオンライン重み正則化戦略を用いて重要なモデルパラメータを特定し、データ分布の変化を自動認識。多様なベンチマークデータセットで優れた性能を示す。 Comment

image



#Sentence #Embeddings #Pocket #NLP #LanguageModel #RepresentationLearning #ContrastiveLearning #Selected Papers/Blogs Issue Date: 2023-07-27 SimCSE: Simple Contrastive Learning of Sentence Embeddings, Tianyu Gao+, N_A, EMNLP'21 GPT Summary- この論文では、SimCSEという対比学習フレームワークを提案しています。このフレームワークは、文の埋め込み技術を進化させることができます。教師なしアプローチでは、入力文をノイズとして扱い、自己を対比的に予測します。教師ありアプローチでは、自然言語推論データセットから注釈付きのペアを使用して対比学習を行います。SimCSEは、意味的テキスト類似性タスクで評価され、以前の手法と比較して改善を実現しました。対比学習は、事前学習された埋め込みの空間を均一に正則化し、教師信号が利用可能な場合には正のペアをよりよく整列させることが示されました。 Comment

Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, Reimers+, UKP-TUDA, EMNLP'19 よりも性能良く、unsupervisedでも学習できる。STSタスクのベースラインにだいたい入ってる

# 手法概要

Contrastive Learningを活用して、unsupervised/supervisedに学習を実施する。

Unsupervised SimCSEでは、あるsentenceをencoderに2回入力し、それぞれにdropoutを適用させることで、positive pairを作成する。dropoutによって共通のembeddingから異なる要素がマスクされた(noiseが混ざった状態とみなせる)類似したembeddingが作成され、ある種のdata augmentationによって正例を作成しているともいえる。負例はnegative samplingする。(非常にsimpleだが、next sentence predictionで学習するより性能が良くなる)

Supervised SimCSEでは、アノテーションされたsentence pairに基づいて、正例・負例を決定する。本研究では、NLIのデータセットにおいて、entailment関係にあるものは正例として扱う。contradictions(矛盾)関係にあるものは負例として扱う。

image



# Siamese Networkで用いられるmeans-squared errrorとContrastiveObjectiveの違い

どちらもペアワイズで比較するという点では一緒だが、ContrastiveObjectiveは正例と近づいたとき、負例と遠ざかったときにlossが小さくなるような定式化がされている点が異なる。

image

(画像はこのブログから引用。ありがとうございます。 https://techblog.cccmk.co.jp/entry/2022/08/30/163625)



# Unsupervised SimCSEの実験

異なるdata augmentation手法と比較した結果、dropoutを適用する手法の方が性能が高かった。MLMや, deletion, 類義語への置き換え等よりも高い性能を獲得しているのは興味深い。また、Next Sentence Predictionと比較しても、高い性能を達成。Next Sentence Predictionは、word deletion等のほぼ類似したテキストから直接的に類似関係にあるペアから学習するというより、Sentenceの意味内容のつながりに基づいてモデルの言語理解能力を向上させ、そのうえで類似度を測るという間接的な手法だが、word deletionに負けている。一方、dropoutを適用するだけの(直接的に類似ペアから学習する)本手法はより高い性能を示している。

[image](https://github.com/AkihikoWatanabe/paper_notes/assets/12249301/0ea3549e-3363-4857-94e6-a1ef474aa191)



なぜうまくいくかを分析するために、異なる設定で実験し、alignment(正例との近さ)とuniformity(どれだけembeddingが一様に分布しているか)を、10 stepごとにplotした結果が以下。dropoutを適用しない場合と、常に同じ部分をマスクする方法(つまり、全く同じembeddingから学習する)設定を見ると、学習が進むにつれuniformityは改善するが、alignmentが悪くなっていっている。一方、SimCSEはalignmentを維持しつつ、uniformityもよくなっていっていることがわかる。

image

image



# Supervised SimCSEの実験

アノテーションデータを用いてContrastiveLearningするにあたり、どういったデータを正例としてみなすと良いかを検証するために様々なデータセットで学習し性能を検証した。



- QQP4: Quora question pairs

- Flickr30k (Young et al., 2014): 同じ画像に対して、5つの異なる人間が記述したキャプションが存在

- ParaNMT (Wieting and Gimpel, 2018): back-translationによるparaphraseのデータセットa

- NLI datasets: SNLIとMNLI



実験の結果、NLI datasetsが最も高い性能を示した。この理由としては、NLIデータセットは、crowd sourcingタスクで人手で作成された高品質なデータセットであることと、lexical overlapが小さくなるようにsentenceのペアが作成されていることが起因している。実際、NLI datsetのlexical overlapは39%だったのに対し、ほかのデータセットでは60%であった。



また、condunctionsとなるペアを明示的に負例として与えることで、より性能が向上した(普通はnegative samplingする、というかバッチ内の正例以外のものを強制的に負例とする。こうすると、意味が同じでも負例になってしまう事例が出てくることになる)。より難しいNLIタスクを含むANLIデータセットを追加した場合は、性能が改善しなかった。この理由については考察されていない。性能向上しそうな気がするのに。

image

# 他手法との比較結果

SimCSEがよい。

image



# Ablation Studies

異なるpooling方法で、どのようにsentence embeddingを作成するかで性能の違いを見た。originalのBERTの実装では、CLS token のembeddingの上にMLP layerがのっかっている。これの有無などと比較。

Unsupervised SimCSEでは、training時だけMLP layerをのっけて、test時はMLPを除いた方が良かった。一方、Supervised SimCSEでは、 MLP layerをのっけたまんまで良かったとのこと。

image

また、SimCSEで学習したsentence embeddingを別タスクにtransferして活用する際には、SimCSEのobjectiveにMLMを入れた方が、catastrophic forgettingを防げて性能が高かったとのこと。



image

ablation studiesのhard negativesのところと、どのようにミニバッチを構成するか、それぞれのtransferしたタスクがどのようなものがしっかり読めていない。あとでよむ。



#Pocket Issue Date: 2024-10-10 Overcoming catastrophic forgetting in neural networks, James Kirkpatrick+, N_A, arXiv'16 GPT Summary- タスクを逐次的に学習する能力を持つネットワークを訓練する方法を提案。重要な重みの学習を選択的に遅くすることで、古いタスクの記憶を維持。MNISTやAtari 2600ゲームでの実験により、アプローチの効果とスケーラビリティを実証。 Comment

Catastrophic Forgettingを防ぐEWCを提案した論文



#Article #EfficiencyImprovement #NLP #LanguageModel #Supervised-FineTuning (SFT) #Blog #PEFT(Adaptor/LoRA) Issue Date: 2023-10-29 大規模言語モデルのFine-tuningによるドメイン知識獲得の検討, PFN Blog, 2023.10 Comment

以下記事中で興味深かった部分を引用
> まとめると、LoRAは、[3]で言われている、事前学習モデルは大量のパラメータ数にもかかわらず低い固有次元を持ち、Fine-tuningに有効な低次元のパラメータ化も存在する、という主張にインスパイアされ、ΔWにおける重みの更新の固有次元も低いという仮説のもとで、低ランク行列で学習する手法になります。

LoRAが拠り所とする仮説が説明されており、勉強になった。

> こうしたニューラルネットワークを圧縮する他の技術には枝刈りや知識蒸留がありますが、量子化は、ほとんどの場合に枝刈りより優れているとされ[5]、蒸留よりも手軽に高精度なモデルが得られる可能性が高く、LLMにおいても有力な技術と考えられます。

これも知らなかったし、文献付きで記述されていることが大変ありがたい。

> QLoRA以外のLoRAの派生手法としては、ランクを適応的に定めるAdaLoRA[7] やDyLoRA[8]、コンテキスト長を拡大できるLongLoRA[9]、行列Aの重みをfreezeすることでさらに軽量化を行うLoRA-FA、行列積をアダマール積やクロネッカー積で計算するLoHAやLoKRなどがあります(一部はLLMではなくStable Diffusionの学習で用いられる手法の通称です)。

この辺は実際にLoRAを使うことになったら勉強したい。

> 言語モデルの学習は通常、Causal LMの場合は、Next Token PredictionにおけるPerplexityの最小化による教師なし学習によって最適化されます。

HuggingFaceの実装の話だと思うが、そうだろうなと思ってはいたがソースを確認できていなかったので勉強になった。

> 7Bのモデルでは、以下のグラフのように、データの件数を増やすと学習がうまくいかないという結果が得られました。また、LoRAのランクは低い方が学習が安定することがわかりました。正答率が著しく低いものは、学習時のロス(交差エントロピー)が非常に大きくなっており、選択肢を間違えるというよりは言語モデルとしての機能が失われていました。

> 他には、Instructionデータ(1つのクイズのQ&A)が2500件を超えるとロスが悪化することや、2000件でも2epoch繰り返すとcatastrophic forgettingが見られ、言語モデルそのものの性能が失われ意味のない出力をしていました。[17] でも言及されていますが、日本語の学習では、数BのモデルにおけるLoRAによるInstruction Tuningはあまり効果が得られない可能性が高いと考えられます。

> 一方、13Bのモデルでは、8、16、32、64いずれのランクでも大きな差は見られませんでした。
> これらから、Addtional Trainingで学習させるデータがInstruction Tuningに対して膨大である場合には先に学習した方がよく、少数の場合は後に学習させてもInstruction Tuningの効果には悪影響がないということが示唆されました。

> また学習は、初期学習率を小さくした方が安定する可能性が高いと思われます。LoRAの論文[2] ではGPTのFine-tuneは2e-4で行われており、hugging faceの実装でもデフォルトでは2e-4となっていますが、他の論文やブログでは3e-5での例などもあります。しかし、単に下げれば安定するということでもなく、1回の試行における計算コストとチューニングがトレードオフになる可能性はあります。

Additional TrainingとはFinetuningのことで便宜上の本ブログでの呼称。実際の文書中では図が複数個挟まれている。
こうした実際に手を動かした上でないと得られない知見を公開してくれるのは非常にありがたいことだし、日本語データでLoRAをする際に非常に参考になりそう。