Stability
Issue Date: 2025-08-14 [Paper Note] Geometric-Mean Policy Optimization, Yuzhong Zhao+, arXiv'25 GPT Summary- GRPOの不安定性を解決するために、幾何平均を最適化するGMPOを提案。GMPOは外れ値に敏感でなく、安定した重要度サンプリング比率を維持。実験により、GMPO-7Bは複数の数学的およびマルチモーダル推論ベンチマークでGRPOを上回る性能を示した。 Comment
元ポスト:
ポイント解説:
#EfficiencyImprovement #Pocket #NLP #LanguageModel #Optimizer #read-later #Selected Papers/Blogs #ModelMerge
Issue Date: 2025-08-02 [Paper Note] WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training, Changxin Tian+, arXiv'25 GPT Summary- 学習率スケジューリングの新たなアプローチとして、Warmup-Stable and Merge(WSM)を提案。WSMは、学習率の減衰とモデルマージの関係を確立し、さまざまな減衰戦略を統一的に扱う。実験により、マージ期間がモデル性能において重要であることを示し、従来のWSDアプローチを上回る性能向上を達成。特に、MATHで+3.5%、HumanEvalで+2.9%、MMLU-Proで+5.5%の改善を記録。 Comment
元ポスト:
Weight Decayを無くせるらしい
エッセンスの解説:
チェックポイントさえ保存しておいて事後的に活用することだで、細かなハイパラ調整のための試行錯誤する手間と膨大な計算コストがなくなるのであれば相当素晴らしいのでは…?
解説:
#EfficiencyImprovement #Pocket #NLP #LanguageModel #ReinforcementLearning #MoE(Mixture-of-Experts) #On-Policy
Issue Date: 2025-07-26 [Paper Note] Group Sequence Policy Optimization, Chujie Zheng+, arXiv'25 GPT Summary- Group Sequence Policy Optimization (GSPO)は、大規模言語モデルのための新しい強化学習アルゴリズムで、シーケンスの尤度に基づく重要度比を用いてトレーニングを行う。GSPOは、従来のGRPOアルゴリズムよりも効率的で高性能であり、Mixture-of-Experts (MoE) のトレーニングを安定化させる。これにより、最新のQwen3モデルにおいて顕著な改善が見られる。 Comment
元ポスト:
公式ポスト:
GRPOとGSPOの違いのGIF:
元ポスト:
LoRAは低ランク行列BAの積を計算するが、オリジナルのモデルと同じ挙動から学習をスタートするために、Bをzeroで初期化し、Aはランダムに初期化する。このAとBの不均衡さが、勾配消失、爆発、あるいはsub-optimalな収束の要因となってしまっていた(inter-matrix scale conflicts)。特に、LoRAはモデルのwidthが大きくなると不安定になるという課題があった。このため、低ランク行列を2つ使うのではなく、1つの低ランク行列(とその転置)およびoptimizationのstep tごとにtrainableなパラメータがどの程度影響を与えるかを調整する度合いを決めるscalar function u(t)を導入することで、低ランク行列間の不均衡を解消しつつ、パラメータ数を半減し、学習の安定性と性能を向上させる。たとえばu(t)を学習開始時にzeroにすれば、元のLoRAにおいてBをzeroに初期化するのと同じ挙動(つまり元のモデルと同じ挙動から学習スタートができたりする。みたいな感じだろうか?
関連:
- LoRA: Low-Rank Adaptation of Large Language Models, Edward J. Hu+, ICLR'22
- LoRA+: Efficient Low Rank Adaptation of Large Models, Soufiane Hayou+, N/A, ICML'24
#Analysis #Pretraining #Pocket #NLP #LanguageModel #COLM #Selected Papers/Blogs #KeyPoint Notes Issue Date: 2025-07-11 [Paper Note] Spike No More: Stabilizing the Pre-training of Large Language Models, Sho Takase+, COLM'25 GPT Summary- 大規模言語モデルの事前学習中に発生する損失のスパイクは性能を低下させるため、避けるべきである。勾配ノルムの急激な増加が原因とされ、サブレイヤーのヤコビ行列の分析を通じて、勾配ノルムを小さく保つための条件として小さなサブレイヤーと大きなショートカットが必要であることを示した。実験により、これらの条件を満たす手法が損失スパイクを効果的に防ぐことが確認された。 Comment
元ポスト:
small sub-layers, large shortcutsの説明はこちらに書かれている。前者については、現在主流なLLMの初期化手法は満たしているが、後者はオリジナルのTransformerの実装では実装されている[^1]が、最近の実装では失われてしまっているとのこと。
下図が実験結果で、条件の双方を満たしているのはEmbedLN[^2]とScaled Embed[^3]のみであり、実際にスパイクが生じていないことがわかる。
[^1]:オリジナル論文 [Paper Note] Attention Is All You Need, Ashish Vaswani+, arXiv'17
の3.4節末尾、embedding layersに対してsqrt(d_model)を乗じるということがサラッと書いてある。これが実はめちゃめちゃ重要だったという…
[^2]: positional embeddingを加算する前にLayer Normalizationをかける方法
[^3]: EmbeddingにEmbeddingの次元数d(i.e., 各レイヤーのinputの次元数)の平方根を乗じる方法
前にScaled dot-product attentionのsqrt(d_k)がめっちゃ重要ということを実験的に示した、という話もあったような…
(まあそもそも元論文になぜスケーリングさせるかの説明は書いてあるけども)
著者ポスト(スライド):
非常に興味深いので参照のこと。初期化の気持ちの部分など勉強になる。
#EfficiencyImprovement #Pocket #NLP #LanguageModel #MoE(Mixture-of-Experts) Issue Date: 2025-09-02 [Paper Note] StableMoE: Stable Routing Strategy for Mixture of Experts, Damai Dai+, arXiv'22 GPT Summary- StableMoEは、ルーティングの変動問題に対処するために2つのトレーニングステージを持つMixture-of-Experts手法を提案。最初のステージで一貫したルーティング戦略を学習し、軽量ルーターに蒸留。第二のステージでそのルーターを用いてエキスパートへの割り当てを固定。言語モデリングと多言語機械翻訳での実験により、StableMoEは収束速度と性能で既存手法を上回ることが示された。 Comment
元ポスト:
#Article #Analysis #MachineLearning #NLP #LanguageModel #ReinforcementLearning #LLMAgent #Blog Issue Date: 2025-09-27 When Speed Kills Stability: Demystifying RL Collapse from the Training-Inference Mismatch, Liu+, 2025.09 Comment
元ポスト:
訓練時のエンジン(fsdp等)とロールアウト時のエンジン(vLLM等)が、OOVなトークンに対して(特にtooluseした場合に生じやすい)著しく異なる尤度を割り当てるため学習が崩壊し、それは利用するGPUによっても安定性が変化し(A100よりもL20, L20よりもH20)、tokenレベルのImporttance Weightingでは難しく、Sequenceレベルのサンプリングが必要、みたいな話な模様。
関連:
- Your Efficient RL Framework Secretly Brings You Off-Policy RL Training, Yao+, 2025.08
- [Paper Note] Group Sequence Policy Optimization, Chujie Zheng+, arXiv'25
#Article #NLP #LanguageModel #Optimizer #OpenWeight #MoE(Mixture-of-Experts) #read-later #Selected Papers/Blogs #KeyPoint Notes #Reference Collection Issue Date: 2025-07-12 Kimi K2: Open Agentic Intelligence, moonshotai, 2025.07 Comment
元ポスト:
1T-A32Bのモデル。さすがに高性能。
(追記) Reasoningモデルではないのにこの性能のようである。
1T-A32Bのモデルを15.5Tトークン訓練するのに一度もtraining instabilityがなかったらしい
元ポスト:
量子化したモデルが出た模様:
仕事早すぎる
DeepSeek V3/R1とのアーキテクチャの違い:
MLAのヘッドの数が減り、エキスパートの数を増加させている
解説ポスト:
利用されているOptimizer:
- [Paper Note] Muon is Scalable for LLM Training, Jingyuan Liu+, arXiv'25
2つほどバグがあり修正された模様:
chatbot arenaでOpenLLMの中でトップのスコア
元ポスト:
テクニカルペーパーが公開:
https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf
元ポスト:
テクニカルレポートまとめ:
以下のような技術が使われている模様
- Rewriting Pre-Training Data Boosts LLM Performance in Math and Code, Kazuki Fujii+, arXiv'25
- MLA MHA vs MQA vs GQA vs MLA, Zain ul Abideen, 2024.07
- MuonCip
- MuonOptimizer [Paper Note] Muon is Scalable for LLM Training, Jingyuan Liu+, arXiv'25
- QK-Clip
- 参考(こちらはLayerNormを使っているが): Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action, Jiasen Lu+, N/A, CVPR'24
- RLVR
- DeepSeek-R1, DeepSeek, 2025.01
- Self-Critique
- 関連: [Paper Note] Inference-Time Scaling for Generalist Reward Modeling, Zijun Liu+, arXiv'25
- [Paper Note] Writing-Zero: Bridge the Gap Between Non-verifiable Problems and Verifiable Rewards, Xun Lu, arXiv'25
- Temperature Decay
- 最初はTemperatureを高めにした探索多めに、後半はTemperatureを低めにして効用多めになるようにスケジューリング
- Tool useのためのSynthetic Data
<img width="1058" height="336" alt="Image" src="
<a href="https://github.com/user-attachments/assets/74eacdb2-8f64-4d53-b2d0-66df770f2e8b"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/74eacdb2-8f64-4d53-b2d0-66df770f2e8b"</a>
/>
Reward Hackingに対処するため、RLVRではなくpairwise comparisonに基づくself judging w/ critique を利用きており、これが非常に効果的な可能性があるのでは、という意見がある: