TabularData
#Survey
#NLP
#LanguageModel
#DataToTextGeneration
Issue Date: 2024-03-05 Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey, Xi Fang+, N_A, arXiv'24 Summary最近の大規模言語モデリングの進展により、様々なタスクにおける応用が容易になっているが、包括的なレビューが不足している。この研究は、最近の進歩をまとめ、データセット、メトリクス、方法論を調査し、将来の研究方向に洞察を提供することを目的としている。また、関連するコードとデータセットの参照も提供される。 CommentTabular DataにおけるLLM関連のタスクや技術等のサーベイ #Pocket #NLP #LanguageModel #DataToTextGeneration #ICLR
Issue Date: 2024-01-24 Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding, Zilong Wang+, N_A, ICLR'24 SummaryLLMsを使用したChain-of-Tableフレームワークは、テーブルデータを推論チェーン内で活用し、テーブルベースの推論タスクにおいて高い性能を発揮することが示された。このフレームワークは、テーブルの連続的な進化を表現し、中間結果の構造化情報を利用してより正確な予測を可能にする。さまざまなベンチマークで最先端のパフォーマンスを達成している。 CommentTable, Question, Operation Historyから次のoperationとそのargsを生成し、テーブルを順次更新し、これをモデルが更新の必要が無いと判断するまで繰り返す。最終的に更新されたTableを用いてQuestionに回答する手法。Questionに回答するために、複雑なテーブルに対する操作が必要なタスクに対して有効だと思われる。
#ComputerVision
#NaturalLanguageGeneration
#NLP
#LanguageModel
#TextToImageGeneration
Issue Date: 2023-07-15 Table and Image Generation for Investigating Knowledge of Entities in Pre-trained Vision and Language Models, ACL'23 Summary本研究では、Vision&Language(V&L)モデルにおけるエンティティの知識の保持方法を検証するために、テーブルと画像の生成タスクを提案します。このタスクでは、エンティティと関連する画像の知識を含むテーブルを生成する第一の部分と、キャプションとエンティティの関連知識を含むテーブルから画像を生成する第二の部分があります。提案されたタスクを実行するために、Wikipediaの約20万のinfoboxからWikiTIGデータセットを作成しました。最先端のV&LモデルOFAを使用して、提案されたタスクのパフォーマンスを評価しました。実験結果は、OFAが一部のエンティティ知識を忘れることを示しています。
Issue Date: 2024-03-05 Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey, Xi Fang+, N_A, arXiv'24 Summary最近の大規模言語モデリングの進展により、様々なタスクにおける応用が容易になっているが、包括的なレビューが不足している。この研究は、最近の進歩をまとめ、データセット、メトリクス、方法論を調査し、将来の研究方向に洞察を提供することを目的としている。また、関連するコードとデータセットの参照も提供される。 CommentTabular DataにおけるLLM関連のタスクや技術等のサーベイ #Pocket #NLP #LanguageModel #DataToTextGeneration #ICLR
Issue Date: 2024-01-24 Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding, Zilong Wang+, N_A, ICLR'24 SummaryLLMsを使用したChain-of-Tableフレームワークは、テーブルデータを推論チェーン内で活用し、テーブルベースの推論タスクにおいて高い性能を発揮することが示された。このフレームワークは、テーブルの連続的な進化を表現し、中間結果の構造化情報を利用してより正確な予測を可能にする。さまざまなベンチマークで最先端のパフォーマンスを達成している。 CommentTable, Question, Operation Historyから次のoperationとそのargsを生成し、テーブルを順次更新し、これをモデルが更新の必要が無いと判断するまで繰り返す。最終的に更新されたTableを用いてQuestionに回答する手法。Questionに回答するために、複雑なテーブルに対する操作が必要なタスクに対して有効だと思われる。
Issue Date: 2023-07-15 Table and Image Generation for Investigating Knowledge of Entities in Pre-trained Vision and Language Models, ACL'23 Summary本研究では、Vision&Language(V&L)モデルにおけるエンティティの知識の保持方法を検証するために、テーブルと画像の生成タスクを提案します。このタスクでは、エンティティと関連する画像の知識を含むテーブルを生成する第一の部分と、キャプションとエンティティの関連知識を含むテーブルから画像を生成する第二の部分があります。提案されたタスクを実行するために、Wikipediaの約20万のinfoboxからWikiTIGデータセットを作成しました。最先端のV&LモデルOFAを使用して、提案されたタスクのパフォーマンスを評価しました。実験結果は、OFAが一部のエンティティ知識を忘れることを示しています。
#NLP
#LanguageModel
Issue Date: 2023-05-21
StructGPT: A General Framework for Large Language Model to Reason over Structured Data, Jinhao Jiang+, N_A, arXiv'23
Summary本論文では、大規模言語モデル(LLMs)を使用して構造化データ上のゼロショット推論能力を改善する方法について研究し、Iterative Reading-then-Reasoning(IRR)アプローチを提案しました。このアプローチでは、構造化データから関連するエビデンスを収集する専門的な関数を構築し、LLMsに収集された情報に基づいて推論タスクに集中させます。外部インターフェースの支援を受けて、LLMsが構造化データ上で推論するためのinvoking-linearization-generation手順を提案し、与えられたクエリに対する目標回答に徐々に近づくことができます。徹底的な実験により、アプローチの有効性を示し、フルデータの教師ありチューニングベースラインと同等のパフォーマンスを達成することができます。コードとデータは、\url{https://github.com/RUCAIBox/StructGPT}で公開されています。
Comment構造化データに対するLLMのゼロショットのreasoning能力を改善。構造化データに対するQAタスクで手法が有効なことを示した。
#NLP
#LanguageModel
#QuestionAnswering
Issue Date: 2023-04-28
Large Language Models are Versatile Decomposers: Decompose Evidence and Questions for Table-based Reasoning, Ye+, University of Science and Technology of China, SIGIR'23
Commentテーブルとquestionが与えられた時に、questionをsub-questionとsmall tableにLLMでin-context learningすることで分割。subquestionの解を得るためのsqlを作成しスポットを埋め、hallucinationを防ぐ。最終的にLLM Reasonerが解答を導出する。TabFact Reasoningで初めて人間を超えた性能を発揮。
#NeuralNetwork
#MachineLearning
#Transformer
Issue Date: 2023-04-28
Why do tree-based models still outperform deep learning on typical tabular data?, Grinsztajn+, Soda, Inria Saclay , arXiv'22
Commenttree basedなモデルがテーブルデータに対してニューラルモデルよりも優れた性能を発揮することを確認し、なぜこのようなことが起きるかいくつかの理由を説明した論文。
NNよりもtree basedなモデルがうまくいく理由として、モデルの帰納的バイアスがテーブルデータに適していることを調査している。考察としては
1. NNはスムーズなターゲットを学習する能力が高いが、表形式のような不規則なデータを学習するのに適していない
・Random Forestでは、x軸においてirregularなパターンも学習できているが、NNはできていない。
2. uninformativeなfeaatureがMLP-likeなNNに悪影響を与える
・Tabular dataは一般にuninformativeな情報を多く含んでおり、実際MLPにuninformativeなfeatureを組み込んだ場合tree-basedな手法とのgapが増加した
3. データはrotationに対して不変ではないため、学習手順もそうあるべき(この辺がよくわからなかった)
・ResNetはRotationを加えても性能が変わらなかった(rotation invariantな構造を持っている)
#NeuralNetwork #NaturalLanguageGeneration #NLP #Dataset #DataToTextGeneration #ACL #Encoder-Decoder Issue Date: 2025-08-06 Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data, Jhamtani+, ACL'18 Commentデータセットの日本語解説(過去の自分の資料):https://speakerdeck.com/akihikowatanabe/data-to-text-datasetmatome-summary-of-data-to-text-datasets?slide=66 #Article #ComputerVision #NLP #Transformer Issue Date: 2023-12-01 Table Transformer Demo CommentPDF中のテーブルとその構造(行列セル)をdetectするモデル
Exampleは以下のような感じ(日本語だとどれくらいできるのかな...)


NNよりもtree basedなモデルがうまくいく理由として、モデルの帰納的バイアスがテーブルデータに適していることを調査している。考察としては
1. NNはスムーズなターゲットを学習する能力が高いが、表形式のような不規則なデータを学習するのに適していない
・Random Forestでは、x軸においてirregularなパターンも学習できているが、NNはできていない。

2. uninformativeなfeaatureがMLP-likeなNNに悪影響を与える
・Tabular dataは一般にuninformativeな情報を多く含んでおり、実際MLPにuninformativeなfeatureを組み込んだ場合tree-basedな手法とのgapが増加した

3. データはrotationに対して不変ではないため、学習手順もそうあるべき(この辺がよくわからなかった)
・ResNetはRotationを加えても性能が変わらなかった(rotation invariantな構造を持っている)

#NeuralNetwork #NaturalLanguageGeneration #NLP #Dataset #DataToTextGeneration #ACL #Encoder-Decoder Issue Date: 2025-08-06 Learning to Generate Move-by-Move Commentary for Chess Games from Large-Scale Social Forum Data, Jhamtani+, ACL'18 Commentデータセットの日本語解説(過去の自分の資料):https://speakerdeck.com/akihikowatanabe/data-to-text-datasetmatome-summary-of-data-to-text-datasets?slide=66 #Article #ComputerVision #NLP #Transformer Issue Date: 2023-12-01 Table Transformer Demo CommentPDF中のテーブルとその構造(行列セル)をdetectするモデル
Exampleは以下のような感じ(日本語だとどれくらいできるのかな...)