QuestionGeneration

#Pocket #NLP #Dataset #LanguageModel #LLMAgent #Evaluation
Issue Date: 2025-04-02 Interactive Agents to Overcome Ambiguity in Software Engineering, Sanidhya Vijayvargiya+, arXiv'25 SummaryAIエージェントはあいまいな指示に基づくタスク自動化に利用されるが、誤った仮定や質問不足がリスクを生む。本研究では、LLMエージェントのあいまいな指示処理能力を評価し、インタラクティビティを活用したパフォーマンス向上、あいまいさの検出、目標を絞った質問の実施を検討。結果、モデルは明確な指示と不十分な指示を区別するのが難しいが、インタラクションを通じて重要な情報を取得し、パフォーマンスが向上することが示された。これにより、現在のモデルの限界と改善のための評価手法の重要性が明らかになった。 Comment曖昧なユーザメッセージに対する、エージェントが"質問をする能力を測る"ベンチマーク

Image
#NLP #Education #EducationalDataMining
Issue Date: 2023-07-15 Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment, ACL'23 Summary本研究では、教育的な対話における情報のギャップに焦点を当て、自動的に質問を生成する問題に取り組んでいます。良い質問の要素を明確にし、それを満たすモデルを提案します。また、人間のアノテーターによる評価を行い、生成された質問の競争力を示します。 #NaturalLanguageGeneration #NLP #Education #AdaptiveLearning #KnowledgeTracing #Personalization
Issue Date: 2023-07-14 Adaptive and Personalized Exercise Generation for Online Language Learning, ACL'23 Summary本研究では、オンライン言語学習のための適応的な演習生成の新しいタスクを研究しました。学習履歴から学生の知識状態を推定し、その状態に基づいて個別化された演習文を生成するモデルを提案しました。実データを用いた実験結果から、学生の状態に応じた演習を生成できることを示しました。さらに、教育アプリケーションでの利用方法についても議論し、学習の効率化を促進できる可能性を示しました。 CommentKnowledge Tracingで推定された習熟度に基づいて、エクササイズを自動生成する研究。KTとNLGが組み合わさっており、非常におもしろい。

image