Zero/FewShotLearning
#RecommenderSystems
#LanguageModel
#Contents-based
#Supervised-FineTuning (SFT)
#PEFT(Adaptor/LoRA)
#RecSys
Issue Date: 2025-03-30 TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation, Keqin Bao+, RecSys'23 Summary大規模言語モデル(LLMs)を推薦システムに活用するため、推薦データで調整するフレームワークTALLRecを提案。限られたデータセットでもLLMsの推薦能力を向上させ、効率的に実行可能。ファインチューニングされたLLMはクロスドメイン一般化を示す。 Comment下記のようなユーザのプロファイルとターゲットアイテムと、binaryの明示的なrelevance feedbackデータを用いてLoRA、かつFewshot Learningの設定でSFTすることでbinaryのlike/dislikeの予測性能を向上。PromptingだけでなくSFTを実施した初めての研究だと思われる。
既存ベースラインと比較して大幅にAUCが向上
#NaturalLanguageGeneration
#NLP
#DataToTextGeneration
#MultitaskLearning
Issue Date: 2023-07-18 Few-Shot Data-to-Text Generation via Unified Representation and Multi-Source Learning, ACL'23 Summaryこの論文では、構造化データからテキストを生成する新しいアプローチを提案しています。提案手法は、さまざまな形式のデータを処理できる統一された表現を提供し、マルチタスクトレーニングやゼロショット学習などのシナリオでのパフォーマンスを向上させることを目指しています。実験結果は、提案手法が他の方法と比較して優れた性能を示していることを示しています。これは、データからテキスト生成フレームワークにおける重要な進歩です。 #NLP #DataDistillation #Attention
Issue Date: 2023-07-14 Dataset Distillation with Attention Labels for Fine-tuning BERT, ACL'23 Summary本研究では、データセットの蒸留を使用して、元のデータセットのパフォーマンスを保持しながら、ニューラルネットワークを迅速にトレーニングするための小さなデータセットを作成する方法に焦点を当てています。具体的には、事前学習済みのトランスフォーマーを微調整するための自然言語処理タスクの蒸留されたfew-shotデータセットの構築を提案しています。実験結果では、注意ラベルを使用してfew-shotデータセットを作成し、BERTの微調整において印象的なパフォーマンスを実現できることを示しました。例えば、ニュース分類タスクでは、わずか1つのサンプルとわずか1つの勾配ステップのみで、元のデータセットの98.5%のパフォーマンスを達成しました。 CommentDatadistillationしたら、データセットのうち1サンプルのみで、元のデータセットの98.5%の性能を発揮できたという驚異的な研究(まえかわ君)
Issue Date: 2025-03-30 TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation, Keqin Bao+, RecSys'23 Summary大規模言語モデル(LLMs)を推薦システムに活用するため、推薦データで調整するフレームワークTALLRecを提案。限られたデータセットでもLLMsの推薦能力を向上させ、効率的に実行可能。ファインチューニングされたLLMはクロスドメイン一般化を示す。 Comment下記のようなユーザのプロファイルとターゲットアイテムと、binaryの明示的なrelevance feedbackデータを用いてLoRA、かつFewshot Learningの設定でSFTすることでbinaryのlike/dislikeの予測性能を向上。PromptingだけでなくSFTを実施した初めての研究だと思われる。
既存ベースラインと比較して大幅にAUCが向上
Issue Date: 2023-07-18 Few-Shot Data-to-Text Generation via Unified Representation and Multi-Source Learning, ACL'23 Summaryこの論文では、構造化データからテキストを生成する新しいアプローチを提案しています。提案手法は、さまざまな形式のデータを処理できる統一された表現を提供し、マルチタスクトレーニングやゼロショット学習などのシナリオでのパフォーマンスを向上させることを目指しています。実験結果は、提案手法が他の方法と比較して優れた性能を示していることを示しています。これは、データからテキスト生成フレームワークにおける重要な進歩です。 #NLP #DataDistillation #Attention
Issue Date: 2023-07-14 Dataset Distillation with Attention Labels for Fine-tuning BERT, ACL'23 Summary本研究では、データセットの蒸留を使用して、元のデータセットのパフォーマンスを保持しながら、ニューラルネットワークを迅速にトレーニングするための小さなデータセットを作成する方法に焦点を当てています。具体的には、事前学習済みのトランスフォーマーを微調整するための自然言語処理タスクの蒸留されたfew-shotデータセットの構築を提案しています。実験結果では、注意ラベルを使用してfew-shotデータセットを作成し、BERTの微調整において印象的なパフォーマンスを実現できることを示しました。例えば、ニュース分類タスクでは、わずか1つのサンプルとわずか1つの勾配ステップのみで、元のデータセットの98.5%のパフォーマンスを達成しました。 CommentDatadistillationしたら、データセットのうち1サンプルのみで、元のデータセットの98.5%の性能を発揮できたという驚異的な研究(まえかわ君)
#NeuralNetwork
#NaturalLanguageGeneration
#NLP
#LanguageModel
#DataToTextGeneration
#pretrained-LM
Issue Date: 2022-12-01
Few-Shot NLG with Pre-Trained Language Model, Chen+, University of California, ACL'20
Comment概要
Neural basedなend-to-endなNLGアプローチはdata-hungryなので、Few Shotな設定で高い性能ができる手法を提案(Few shot NLG)
Table-to-Textタスク(WikiBIOデータ, 追加で収集したBook, SongドメインのWikipediaデータ)において、200程度の学習サンプル数でstrong baselineに対して8.0 point程度のBLEUスコアの向上を達成
手法
TabularデータのDescriptionを作成するには大きく分けて2つのスキルが必要
1. factualな情報を持つcontentをselectし、copyするスキル
2. factualな情報のコピーを含めながら、文法的に正しいテキストを生成するスキル
提案手法では、1を少量のサンプル(< 500)から学習し、2については事前学習済みの言語モデルを活用する。
encoderからコピーする確率をpcopyとし、下記式で算出する:
すなわち、encoderのcontext vectorと、decoderのinputとstateから求められる。
encoderとencoder側へのattentionはscratchから学習しなければならず、うまくコピーできるようにしっかりと”teach”しなければならないため、lossに以下を追加する:
すなわち、コピーすべき単語がちゃんとコピーできてる場合にlossが小さくなる項を追加している。
また、decoder側では、最初にTable情報のEmbeddingを入力するようにしている。
また、学習できるデータ量が限られているため、pre-trainingモデルのEmbeddingは事前学習時点のものに固定した(ただしく読解できているか不安)
実験
WikiBIOと、独自に収集したBook, Songに関するWikipediaデータのTable-to-Textデータを用いて実験。
このとき、Training instanceを50~500まで変化させた。
WikiBIOデータセットに対してSoTAを記録しているBase-originalを大きくoutperform(Few shot settingでは全然うまくいかない)。
inputとoutput例と、コピーに関するlossを入れた場合の効果。
人手評価の結果、Factual informationの正しさ(Supp)、誤り(Cont)ともに提案手法が良い。また、文法的な正しさ(Lan. Score)もコピーがない場合とcomparable
#NeuralNetwork #Pocket #Dataset #InformationExtraction #ReadingComprehension #CoNLL #RelationExtraction Issue Date: 2025-08-26 [Paper Note] Zero-Shot Relation Extraction via Reading Comprehension, Omer Levy+, CoNLL'17 Summary関係抽出を自然言語の質問に還元することで、ニューラル読解理解技術を活用し、大規模なトレーニングセットを構築可能にする。これにより、ゼロショット学習も実現。ウィキペディアのスロットフィリングタスクで、既知の関係タイプに対する高精度な一般化と未知の関係タイプへのゼロショット一般化が示されたが、後者の精度は低く、今後の研究の基準を設定。 #Article #NLP #LanguageModel #Admin'sPick Issue Date: 2025-06-15 [Paper Note] Language Models are Unsupervised Multitask Learners, Radford+, OpenAI, 2019 Comment今更ながら、GPT-2論文をメモってなかったので追加。
従来のモデルは特定のタスクを解くためにタスクごとに個別のモデルをFinetuningする必要があったが、大規模なWebTextデータ(Redditにおいて最低3つのupvoteを得たポストの外部リンクを収集)によって言語モデルを訓練し、モデルサイズをスケーリングさせることで、様々なタスクで高い性能を獲得でき、Zero-Shot task transfer, p\(output | input, task) , が実現できるよ、という話。
今ざっくり見返すと、Next Token Predictionという用語は論文中に出てきておらず、かつ "Language Modeling" という用語のみで具体的なlossは記述されておらず(当時はRNN言語モデルで広く学習方法が知られていたからだろうか?)、かつソースコードも学習のコードは提供されておらず、lossの定義も含まれていないように見える。
ソースコードのモデル定義:
https://github.com/openai/gpt-2/blob/master/src/model.pyL169
Neural basedなend-to-endなNLGアプローチはdata-hungryなので、Few Shotな設定で高い性能ができる手法を提案(Few shot NLG)
Table-to-Textタスク(WikiBIOデータ, 追加で収集したBook, SongドメインのWikipediaデータ)において、200程度の学習サンプル数でstrong baselineに対して8.0 point程度のBLEUスコアの向上を達成
手法
TabularデータのDescriptionを作成するには大きく分けて2つのスキルが必要
1. factualな情報を持つcontentをselectし、copyするスキル
2. factualな情報のコピーを含めながら、文法的に正しいテキストを生成するスキル
提案手法では、1を少量のサンプル(< 500)から学習し、2については事前学習済みの言語モデルを活用する。

encoderからコピーする確率をpcopyとし、下記式で算出する:

すなわち、encoderのcontext vectorと、decoderのinputとstateから求められる。
encoderとencoder側へのattentionはscratchから学習しなければならず、うまくコピーできるようにしっかりと”teach”しなければならないため、lossに以下を追加する:

すなわち、コピーすべき単語がちゃんとコピーできてる場合にlossが小さくなる項を追加している。
また、decoder側では、最初にTable情報のEmbeddingを入力するようにしている。
また、学習できるデータ量が限られているため、pre-trainingモデルのEmbeddingは事前学習時点のものに固定した(ただしく読解できているか不安)
実験
WikiBIOと、独自に収集したBook, Songに関するWikipediaデータのTable-to-Textデータを用いて実験。
このとき、Training instanceを50~500まで変化させた。

WikiBIOデータセットに対してSoTAを記録しているBase-originalを大きくoutperform(Few shot settingでは全然うまくいかない)。
inputとoutput例と、コピーに関するlossを入れた場合の効果。

人手評価の結果、Factual informationの正しさ(Supp)、誤り(Cont)ともに提案手法が良い。また、文法的な正しさ(Lan. Score)もコピーがない場合とcomparable

#NeuralNetwork #Pocket #Dataset #InformationExtraction #ReadingComprehension #CoNLL #RelationExtraction Issue Date: 2025-08-26 [Paper Note] Zero-Shot Relation Extraction via Reading Comprehension, Omer Levy+, CoNLL'17 Summary関係抽出を自然言語の質問に還元することで、ニューラル読解理解技術を活用し、大規模なトレーニングセットを構築可能にする。これにより、ゼロショット学習も実現。ウィキペディアのスロットフィリングタスクで、既知の関係タイプに対する高精度な一般化と未知の関係タイプへのゼロショット一般化が示されたが、後者の精度は低く、今後の研究の基準を設定。 #Article #NLP #LanguageModel #Admin'sPick Issue Date: 2025-06-15 [Paper Note] Language Models are Unsupervised Multitask Learners, Radford+, OpenAI, 2019 Comment今更ながら、GPT-2論文をメモってなかったので追加。
従来のモデルは特定のタスクを解くためにタスクごとに個別のモデルをFinetuningする必要があったが、大規模なWebTextデータ(Redditにおいて最低3つのupvoteを得たポストの外部リンクを収集)によって言語モデルを訓練し、モデルサイズをスケーリングさせることで、様々なタスクで高い性能を獲得でき、Zero-Shot task transfer, p\(output | input, task) , が実現できるよ、という話。
今ざっくり見返すと、Next Token Predictionという用語は論文中に出てきておらず、かつ "Language Modeling" という用語のみで具体的なlossは記述されておらず(当時はRNN言語モデルで広く学習方法が知られていたからだろうか?)、かつソースコードも学習のコードは提供されておらず、lossの定義も含まれていないように見える。
ソースコードのモデル定義:
https://github.com/openai/gpt-2/blob/master/src/model.pyL169