ACL

#Pocket
Issue Date: 2025-01-06 Legal Case Retrieval: A Survey of the State of the Art, Feng+, ACL24, 2024.08 CommentRecent years have seen increasing attention on Legal Case Retrieval (LCR), a key task in the area of Legal AI that concerns the retrieval of cases fr ... #Pocket#Dataset#Financial
Issue Date: 2025-01-06 FinTextQA: A Dataset for Long-form Financial Question Answering, Jian Chen+, arXiv24 Comment@AkihikoWatanabe Do you have this dataset, please share it with me. Thank you.@thangmaster37 Thank you for your comment and I'm sorry for the late rep ... #Pocket
Issue Date: 2025-01-06 Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models, Changyu Chen+, arXiv24 Comment気になる ... #Pocket
Issue Date: 2025-01-06 A Deep Dive into the Trade-Offs of Parameter-Efficient Preference Alignment Techniques, Megh Thakkar+, arXiv24 #Pocket
Issue Date: 2025-01-06 NICE: To Optimize In-Context Examples or Not?, Pragya Srivastava+, arXiv24 Comment興味深い ... #Pretraining#Pocket#InstructionTuning
Issue Date: 2025-01-06 Instruction-tuned Language Models are Better Knowledge Learners, Zhengbao Jiang+, arXiv24 Comment興味深い ... #Pocket
Issue Date: 2025-01-06 Learning to Edit: Aligning LLMs with Knowledge Editing, Yuxin Jiang+, arXiv24 #Pocket
Issue Date: 2025-01-06 Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors, Alicja Chaszczewicz+, arXiv24 #Pocket
Issue Date: 2025-01-06 Learning Global Controller in Latent Space for Parameter-Efficient Fine-Tuning, Tan+, ACL24, 2024.08 CommentWhile large language models (LLMs) have showcased remarkable prowess in various natural language processing tasks, their training costs are exorbitan ... #Pocket
Issue Date: 2025-01-06 OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems, Chaoqun He+, arXiv24 #Pocket
Issue Date: 2025-01-06 DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows, Ajay Patel+, arXiv24 #Pocket
Issue Date: 2025-01-06 Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives, Wenqi Zhang+, arXiv24 #Pocket
Issue Date: 2025-01-06 Llama2Vec: Unsupervised Adaptation of Large Language Models for Dense Retrieval, Li+, ACL24, 2024.08 CommentDense retrieval calls for discriminative embeddings to represent the semantic relationship between query and document. It may benefit from the using ... #Pocket#Education
Issue Date: 2025-01-06 BIPED: Pedagogically Informed Tutoring System for ESL Education, Kwon+, ACL24, 2024.08 CommentLarge Language Models (LLMs) have a great potential to serve as readily available and cost-efficient Conversational Intelligent Tutoring Systems (CIT ... #Pocket
Issue Date: 2025-01-06 Beyond Memorization: The Challenge of Random Memory Access in Language Models, Tongyao Zhu+, arXiv24 #Pocket
Issue Date: 2025-01-06 Attribute First, then Generate: Locally-attributable Grounded Text Generation, Aviv Slobodkin+, arXiv24 #Pocket
Issue Date: 2025-01-06 Can LLMs Learn from Previous Mistakes? Investigating LLMs Errors to Boost for Reasoning, Yongqi Tong+, arXiv24 #Pocket
Issue Date: 2025-01-06 Enhancing In-Context Learning via Implicit Demonstration Augmentation, Xiaoling Zhou+, arXiv24 #Pocket
Issue Date: 2025-01-06 MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs, Zimu Lu+, arXiv24 #Pocket
Issue Date: 2025-01-06 MELA: Multilingual Evaluation of Linguistic Acceptability, Zhang+, ACL24, 2024.08 CommentIn this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability—MELA, with 46 ... #Pocket
Issue Date: 2025-01-06 Surgical Feature-Space Decomposition of LLMs: Why, When and How?, Arnav Chavan+, arXiv24 #Pocket
Issue Date: 2025-01-06 MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter, Jitai Hao+, arXiv24 #Pocket
Issue Date: 2025-01-06 Benchmarking Knowledge Boundary for Large Language Models: A Different Perspective on Model Evaluation, Xunjian Yin+, arXiv24 #Pocket
Issue Date: 2025-01-06 ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models, Yuanyi Ren+, arXiv24 #Pocket
Issue Date: 2025-01-06 AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension, Qian Yang+, arXiv24 #Pocket
Issue Date: 2025-01-06 Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation, Xiaoying Zhang+, arXiv24 #Pocket
Issue Date: 2025-01-06 Towards Faithful and Robust LLM Specialists for Evidence-Based Question-Answering, Tobias Schimanski+, arXiv24 #Pocket
Issue Date: 2025-01-06 AFaCTA: Assisting the Annotation of Factual Claim Detection with Reliable LLM Annotators, Jingwei+, ACL24, 2024.08 CommentWith the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim ... #Pocket
Issue Date: 2025-01-06 Dissecting Human and LLM Preferences, Junlong Li+, arXiv24 #Pocket
Issue Date: 2025-01-06 Selene: Pioneering Automated Proof in Software Verification, Lichen Zhang+, arXiv24 #Pocket
Issue Date: 2025-01-06 Evaluating Intention Detection Capability of Large Language Models in Persuasive Dialogues, Sakurai+, ACL24, 2024.08 CommentWe investigate intention detection in persuasive multi-turn dialogs employing the largest available Large Language Models (LLMs).Much of the prior re ... #Pocket
Issue Date: 2025-01-06 Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding, Zhihan Zhang+, arXiv24 #Pocket
Issue Date: 2025-01-06 Feature-Adaptive and Data-Scalable In-Context Learning, Jiahao Li+, arXiv24 #Pocket
Issue Date: 2025-01-06 Mitigating Catastrophic Forgetting in Large Language Models with Self-Synthesized Rehearsal, Jianheng Huang+, arXiv24 #Embeddings#Pocket#Finetuning (SFT)#RAG(RetrievalAugmentedGeneration)#LongSequence
Issue Date: 2025-01-06 Grounding Language Model with Chunking-Free In-Context Retrieval, Hongjin Qian+, arXiv24 CommentChunking無しでRAGを動作させられるのは非常に魅力的。![image](https://github.com/user-attachments/assets/8841930a-3099-46c8-aae7-50f52473fbb1)一貫してかなり性能が向上しているように見える![image] ... #Pocket#LanguageModel#Evaluation#Bias
Issue Date: 2025-01-06 ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models, Aparna Elangovan+, arXiv24 #Embeddings#Pocket#Dataset#STS (SemanticTextualSimilarity)
Issue Date: 2025-01-06 Linguistically Conditioned Semantic Textual Similarity, Jingxuan Tu+, arXiv24 #Pocket#NLP#LanguageModel#MoE(Mixture-of-Experts)
Issue Date: 2025-01-06 DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models, Damai+, ACL24, 2024.08 CommentIn the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model param ... #Survey#Pocket#LanguageModel#MulltiModal
Issue Date: 2024-01-25 MM-LLMs: Recent Advances in MultiModal Large Language Models, Duzhen Zhang+, N_A, ACL24 Findings SummaryMM-LLMsは、コスト効果の高いトレーニング戦略を用いて拡張され、多様なMMタスクに対応する能力を持つことが示されている。本論文では、MM-LLMsのアーキテクチャ、トレーニング手法、ベンチマークのパフォーマンスなどについて調査し、その進歩に貢献することを目指している。 Comment以下、論文を斜め読みしながら、ChatGPTを通じて疑問点を解消しつつ理解した内容なので、理解が不十分な点が含まれている可能性があるので注意。 まあざっくり言うと、マルチモーダルを理解できるLLMを作りたかったら、様々なモダリティをエンコーディングして得られる表現と、既存のLLMが内部的に処理 ... #NeuralNetwork#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2023-04-27 Active prompting with chain-of-thought for large language models, Diao+, The Hong Kong University of Science and Technology, ACL24 Commentしっかりと読めていないが、CoT-answerが存在しないtrainingデータが存在したときに、nサンプルにCoTとAnswerを与えるだけでFew-shotの予測をtestデータに対してできるようにしたい、というのがモチベーションっぽい そのために、questionに対して、training ... #NLP#Dataset#PersonalizedGeneration
Issue Date: 2023-04-26 LaMP: When Large Language Models Meet Personalization, Selemi+, University of Massachusetts Amherst (w_ Google Research), ACL24 Comment# 概要 Personalizationはユーザのニーズや嗜好に応えるために重要な技術で、IRやRecSysで盛んに研究されてきたが、NLPではあまり実施されてこなかった。しかし、最近のタスクで、text classificationやgeneration taskでPersonalization# ... #Pocket
Issue Date: 2025-01-06 Forgetting before Learning: Utilizing Parametric Arithmetic for Knowledge Updating in Large Language Models, Shiwen Ni+, arXiv23 #Pocket
Issue Date: 2025-01-06 Are Emergent Abilities in Large Language Models just In-Context Learning?, Sheng Lu+, arXiv23 #Pocket
Issue Date: 2025-01-06 Boosting Language Models Reasoning with Chain-of-Knowledge Prompting, Jianing Wang+, arXiv23 #Pocket
Issue Date: 2025-01-06 Exploring Memorization in Fine-tuned Language Models, Shenglai Zeng+, arXiv23 #Pocket
Issue Date: 2025-01-06 Instruction Fusion: Advancing Prompt Evolution through Hybridization, Weidong Guo+, arXiv23 #Pocket
Issue Date: 2025-01-06 Insert or Attach: Taxonomy Completion via Box Embedding, Wei Xue+, arXiv23 #Pocket
Issue Date: 2025-01-06 Time is Encoded in the Weights of Finetuned Language Models, Kai Nylund+, arXiv23 #Pocket
Issue Date: 2025-01-06 SPARSEFIT: Few-shot Prompting with Sparse Fine-tuning for Jointly Generating Predictions and Natural Language Explanations, Jesus Solano+, arXiv23 #Pocket
Issue Date: 2025-01-06 LoRAMoE: Alleviate World Knowledge Forgetting in Large Language Models via MoE-Style Plugin, Shihan Dou+, arXiv23 #Survey#Pocket#NLP#LanguageModel#Chain-of-Thought
Issue Date: 2025-01-06 Navigate through Enigmatic Labyrinth A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future, Zheng Chu+, arXiv23 #NLP#LanguageModel#Finetuning (SFT)#InstructionTuning
Issue Date: 2023-03-30 Self-Instruct: Aligning Language Model with Self Generated Instructions, Wang+ (w_ Noah Smith), Univesity of Washington, ACL23 CommentAlpacaなどでも利用されているself-instruction技術に関する論文# 概要 ![image](https://user-images.githubusercontent.com/12249301/228716254-5f4d7451-a37a-4354-843d-7e4052ba23 ... #DocumentSummarization#NeuralNetwork#NaturalLanguageGeneration#NLP#LanguageModel#Adapter/LoRA
Issue Date: 2021-09-09 Prefix-Tuning: Optimizing Continuous Prompts for Generation, Lisa+ (Percy Liang), Stanford University, ACL21 Comment言語モデルをfine-tuningする際,エンコード時に「接頭辞」を潜在表現として与え,「接頭辞」部分のみをfine-tuningすることで(他パラメータは固定),より少量のパラメータでfine-tuningを実現する方法を提案.接頭辞を潜在表現で与えるこの方法は,GPT-3のpromptingに着 ... #NLP#ReviewGeneration
Issue Date: 2021-03-17 Unsupervised Opinion Summarization as Copycat-Review Generation, Bražinskas, ACL20 CommentOpinion summarization is the task of automatically creating summaries that reflect subjective information expressed in multiple documents, such as pr ... #Pocket#NLP#CommentGeneration#Personalization
Issue Date: 2019-09-11 Automatic Generation of Personalized Comment Based on User Profile, Zeng+, arXiv19 CommentComments on social media are very diverse, in terms of content, style and vocabulary, which make generating comments much more challenging than other ... #NeuralNetwork#Pocket#NLP#CommentGeneration
Issue Date: 2019-08-24 Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Li+ ,ACL19 CommentAutomatic article commenting is helpful in encouraging user engagement and interaction ononline news platforms. However, the newsdocuments are usuall ... #RecommenderSystems#NeuralNetwork#NaturalLanguageGeneration#Pocket#NLP#ReviewGeneration
Issue Date: 2019-08-17 Automatic Generation of Personalized Comment Based on User Profile, Zeng+, ACL19 Student Research Workshop #Pocket#NLP#DialogueGeneration
Issue Date: 2019-01-24 Training Millions of Personalized Dialogue Agents, Mazaré, ACL19 #NeuralNetwork#NLP#ReviewGeneration
Issue Date: 2019-04-12 Personalized Review Generation by Expanding Phrases and Attending on Aspect-Aware Representations, Ni+, ACL18 Comment![image](https://user-images.githubusercontent.com/12249301/56010165-8fd44a00-5d1d-11e9-8cad-81a5178d95d2.png) Personalized Review Generationタスクを、uPy ... #Pocket#NLP#ReviewGeneration#Personalization
Issue Date: 2018-07-25 Personalized Review Generation by Expanding Phrases and Attending on Aspect-Aware Representations, Ni+, ACL18 #NeuralNetwork#Pocket#NLP#DialogueGeneration
Issue Date: 2018-02-08 Personalizing Dialogue Agents: I have a dog, do you have pets too?, Zhang+, ACL18 CommentChit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivatin ... #DocumentSummarization#NeuralNetwork#Document#Supervised#Pocket#NLP
Issue Date: 2018-01-01 Coarse-to-Fine Attention Models for Document Summarization, Ling+ (with Rush), ACL17 Workshop on New Frontiers in Summarization #Single#DocumentSummarization#NeuralNetwork#Document#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Get To The Point: Summarization with Pointer-Generator Networks, See+, ACL17 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/get-to-the-point-summarization-with-pointergenerator-networks/1単語の生成と単語のコピーの両方を行えるハイブリッドなニューラル文書 ... #NeuralNetwork#ComputerVision#NaturalLanguageGeneration#NLP
Issue Date: 2017-12-31 Multi-Task Video Captioning with Video and Entailment Generation, Pasunuru+, ACL17 Comment解説スライド:https://www.slideshare.net/HangyoMasatsugu/hangyo-acl-paperreading2017multitask-video-captioning-with-video-and-entailment-generation/1multitas ... #NeuralNetwork#Efficiency/SpeedUp#NLP
Issue Date: 2017-12-31 Learning to skim text, Yu+, ACL17 Comment解説スライド:http://www.lr.pi.titech.ac.jp/~haseshun/acl2017suzukake/slides/07.pdf![image](https://user-images.githubusercontent.com/12249301/34460775-f64d4 ... #NeuralNetwork#Embeddings#Analysis#NLP#Word
Issue Date: 2017-12-30 Skip-Gram – Zipf + Uniform = Vector Additivity, Gittens+, ACL17 Comment解説スライド:http://www.lr.pi.titech.ac.jp/~haseshun/acl2017suzukake/slides/09.pdfEmbeddingの加法構成性(e.g. man+royal=king)を理論的に理由づけ (解説スライドより) ... #NeuralNetwork#MachineTranslation#Pocket#NLP
Issue Date: 2017-12-28 What do Neural Machine Translation Models Learn about Morphology?, Yonatan Belinkov+, ACL17 #NeuralNetwork#MachineTranslation#NLP
Issue Date: 2017-12-28 Sequence-to-Dependency Neural Machine Translation, Wu+, ACL17 CommentNowadays a typical Neural Machine Translation (NMT) model generates translations from left to right as a linear sequence, during which latent syntacti ... #PersonalizedDocumentSummarization#InteractivePersonalizedSummarization#NLP#IntegerLinearProgramming (ILP)
Issue Date: 2017-12-28 Joint Optimization of User-desired Content in Multi-document Summaries by Learning from User Feedback, P.V.S+, ACL17, 2017.08 Comment# 一言で言うと ユーザとインタラクションしながら重要なコンセプトを決め、そのコンセプトが含まれるようにILPな手法で要約を生成するPDS手法。Interactive Personalized Summarizationと似ている(似ているが引用していない、引用した方がよいのでは)。 # 手 ... #RecommenderSystems#NewsCitations#LearningToRank
Issue Date: 2018-01-01 News Citation Recommendation with Implicit and Explicit Semantics, Peng+, ACL16 Commenttarget text中に記述されているイベントや意見に対して、それらをサポートするような他のニュース記事を推薦する研究。 たとえば、target text中に「北朝鮮が先日ミサイルの発射に失敗したが...」、といった記述があったときに、このイベントについて報道しているニュース記事を推薦すると ... #Single#DocumentSummarization#NeuralNetwork#Document#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu+, ACL16 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/incorporating-copying-mechanism-in-sequene-to-sequence-learning単語のコピーと生成、両方を行えるネットワークを提案。 locati ... #Single#DocumentSummarization#NeuralNetwork#Document#Supervised#NLP#Extractive
Issue Date: 2017-12-31 Neural Summarization by Extracting Sentences and Words, Cheng+, ACL16 CommentExtractiveかつNeuralな単一文書要約ならベースラインとして使用した方がよいかも ... #NeuralNetwork#Sentence#NLP#LanguageModel
Issue Date: 2017-12-28 Larger-context language modelling with recurrent neural networks, Wang+, ACL16 Comment## 概要 通常のNeural Language Modelはsentence間に独立性の仮定を置きモデル化されているが、この独立性を排除し、preceding sentencesに依存するようにモデル化することで、言語モデルのコーパスレベルでのPerplexityが改善したという話。提案した言語 ... #NeuralNetwork#MachineTranslation#NLP
Issue Date: 2017-12-28 Pointing the unknown words, Gulcehre+, ACL16 Commentテキストを生成する際に、source textからのコピーを行える機構を導入することで未知語問題に対処した話CopyNetと同じタイミングで(というか同じconferenceで)発表 ... #NLP#LanguageModel#IJCNLP
Issue Date: 2018-03-30 Unsupervised prediction of acceptability judgements, Lau+, ACL-IJCNLP15 Comment文のacceptability(容認度)論文。 文のacceptabilityとは、native speakerがある文を読んだときに、その文を正しい文として容認できる度合いのこと。 acceptabilityスコアが低いと、Readabilityが低いと判断できる。 言語モデルをトレーニング ... #NeuralNetwork#NLP
Issue Date: 2018-02-13 Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai+, ACL15 CommentTree-LSTM論文 ... #NeuralNetwork#Document#Embeddings#NLP
Issue Date: 2017-12-28 A hierarchical neural autoencoder for paragraphs and documents, Li+, ACL15 Comment複数文を生成(今回はautoencoder)するために、standardなseq2seq LSTM modelを、拡張したという話。 要は、paragraph/documentのrepresentationが欲しいのだが、アイデアとしては、word-levelの情報を扱うLSTM layerとtr ... #NaturalLanguageGeneration#Others#NLP#DataToTextGeneration
Issue Date: 2017-12-31 Comparing Multi-label Classification with Reinforcement Learning for Summarization of Time-series Data, Gkatzia+, ACL14 #Multi#DocumentSummarization#NLP#Extractive
Issue Date: 2017-12-28 Hierarchical Summarization: Scaling Up Multi-Document Summarization, Christensen+, ACL14 Comment## 概要 だいぶ前に読んだ。好きな研究。 テキストのsentenceを階層的にクラスタリングすることで、抽象度が高い情報から、関連する具体度の高いsentenceにdrill downしていけるInteractiveな要約を提案している。 ## 手法 通常のMDSでのデータセットの規模は上位に紐 ... #NaturalLanguageGeneration#Others#NLP#ConceptToTextGeneration#IJCNLP
Issue Date: 2017-12-31 Learning semantic correspondences with less supervision, Liang+, ACL-IJCNLP09 #MachineLearning#DomainAdaptation#NLP
Issue Date: 2017-12-31 Frustratingly easy domain adaptation, Daume, ACL07 Comment![image](https://user-images.githubusercontent.com/12249301/34462211-f3428130-ee81-11e7-8a06-36e66bd19b2f.png) domain adaptationをする際に、Source側のFeatu ... #NaturalLanguageGeneration#RuleBased#NLP#DataToTextGeneration
Issue Date: 2017-12-31 Design of a knowledge-based report generator, Kukich, ACL83 Comment## タスク numerical stock market dataからstock market reportsを生成,我々と同様なタスク.システム名: ANA ## 手法概要 ルールベースな手法, 1) fact-generator, 2) message generator,Data2Text ... #Article#NeuralNetwork#NLP
Issue Date: 2021-06-10 FastSeq: Make Sequence Generation Faster, Yan+, ACL’21 CommentBART, DistilBART, T5, GPT2等のさまざまなTransformer-basedな手法で、4-9倍Inference speedを向上させる手法を提案。 ... #Article#NeuralNetwork#MachineTranslation#NLP
Issue Date: 2021-06-03 Probing Word Translations in the Transformer and Trading Decoder for Encoder Layers, ACL‘21 CommentTransformerに基づいたNMTにおいて、Encoderが入力を解釈し、Decoderが翻訳をしている、という通説を否定し、エンコーディング段階、さらにはinput embeddingの段階でそもそも翻訳が始まっていることを指摘。エンコーディングの段階ですでに翻訳が始まっているのであれば、エ ... #Article#DocumentSummarization#NeuralNetwork#NaturalLanguageGeneration#NLP
Issue Date: 2021-06-03 Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu+, ACL’16 Comment#371 と同様コピーメカニズムを提案した論文。Joint Copy ModelやCOPYNETと呼ばれる。 次の単語が "生成" されるのか "コピー" されるのかをスコアリングし、各単語がコピーされる確率と生成される確率をMixtureした同時確率分布で表現する( #207 等でも説明されてい解 ... #Article#DocumentSummarization#NeuralNetwork#NaturalLanguageGeneration#NLP
Issue Date: 2021-06-02 Pointing the Unknown Words, Gulcehre+, ACL’16 CommentConditional Copy Model (Pointer Softmax)を提案した論文。単語を生成する際に、語彙内の単語から生成する分布、原文の単語から生成する分布を求める。後者はattention distributionから。コピーするか否かを決める確率変数を導入し(sigmoid)、解 ... #Article#Multi#DocumentSummarization#NLP#Dataset#QueryBiased#Extractive
Issue Date: 2017-12-28 Query-Chain Focused Summarization, Baumel+, ACL.14 Comment[Query-Chain Focused Summarization.pdf](https://github.com/AkihikoWatanabe/paper_notes/files/1590916/Query-Chain.Focused.Summarization.pdf) ... #Article#PersonalizedDocumentSummarization#DocumentSummarization#NLP#COLING
Issue Date: 2017-12-28 Automatic Text Summarization based on the Global Document Annotation, COLING-ACL, Nagao+, 1998, 1998.08 CommentPersonalized summarizationの評価はしていない。提案のみ。以下の3種類の手法を提案 keyword-based customization 関心のあるキーワードをユーザが入力し、コーパスやwordnet等の共起関係から関連語を取得し要約に利用する 文書の ...