Attention
#Survey#Efficiency/SpeedUp#NLP#LanguageModel#Transformer
Issue Date: 2024-11-17 Understanding LLMs: A Comprehensive Overview from Training to Inference, Yiheng Liu+, arXiv24 Comment[Perplexity(参考;Hallucinationに注意)](https://www.perplexity.ai/search/yi-xia-nolun-wen-wodu-minei-ro-7vGwDK_AQX.HDO7j9H8iNA)単なるLLMの理論的な説明にとどまらず、実用的に必要な各種 ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Transformer
Issue Date: 2024-04-07 Dynamic Memory Compression: Retrofitting LLMs for Accelerated Inference, Piotr Nawrot+, N_A, arXiv24 Summaryトランスフォーマーの生成効率を向上させるために、Dynamic Memory Compression(DMC)が提案された。DMCは、異なるヘッドとレイヤーで異なる圧縮率を適用する方法を学習し、事前学習済みLLMsに適用される。DMCは、元の下流パフォーマンスを最大4倍のキャッシュ圧縮で維持しつつ、スループットを向上させることができる。DMCは、GQAと組み合わせることでさらなる利益をもたらす可能性があり、長いコンテキストと大きなバッチを処理する際に有用である。 Comment参考: https://x.com/hillbig/status/1776755029581676943?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q論文中のFigure1が非常にわかりやすい。GQA #1271 と比較して、2~4倍キャッシュを圧縮しつつ、より高い性能を実現。70Bモ ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Transformer
Issue Date: 2024-04-07 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints, Joshua Ainslie+, N_A, arXiv23 SummaryMulti-query attention(MQA)は、単一のkey-value headのみを使用しており、デコーダーの推論を劇的に高速化しています。ただし、MQAは品質の低下を引き起こす可能性があり、さらには、より速い推論のためだけに別個のモデルをトレーニングすることが望ましくない場合もあります。既存のマルチヘッド言語モデルのチェックポイントを、オリジナルの事前トレーニング計量の5%を使用してMQAを持つモデルにアップトレーニングするためのレシピを提案し、さらに、複数のkey-value headを使用するマルチクエリアテンションの一般化であるグループ化クエリアテンション(GQA)を紹介します。アップトレーニングされたGQAが、MQAと同等の速度でマルチヘッドアテンションに匹敵する品質を達成することを示しています。 Comment通常のMulti-Head AttentionがQKVが1対1対応なのに対し、Multi Query Attention (MQA) #1272 は全てのQに対してKVを共有する。一方、GQAはグループごとにKVを共有する点で異なる。MQAは大幅にInfeerence` speedが改善するが、精 ...
Issue Date: 2024-11-17 Understanding LLMs: A Comprehensive Overview from Training to Inference, Yiheng Liu+, arXiv24 Comment[Perplexity(参考;Hallucinationに注意)](https://www.perplexity.ai/search/yi-xia-nolun-wen-wodu-minei-ro-7vGwDK_AQX.HDO7j9H8iNA)単なるLLMの理論的な説明にとどまらず、実用的に必要な各種 ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Transformer
Issue Date: 2024-04-07 Dynamic Memory Compression: Retrofitting LLMs for Accelerated Inference, Piotr Nawrot+, N_A, arXiv24 Summaryトランスフォーマーの生成効率を向上させるために、Dynamic Memory Compression(DMC)が提案された。DMCは、異なるヘッドとレイヤーで異なる圧縮率を適用する方法を学習し、事前学習済みLLMsに適用される。DMCは、元の下流パフォーマンスを最大4倍のキャッシュ圧縮で維持しつつ、スループットを向上させることができる。DMCは、GQAと組み合わせることでさらなる利益をもたらす可能性があり、長いコンテキストと大きなバッチを処理する際に有用である。 Comment参考: https://x.com/hillbig/status/1776755029581676943?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q論文中のFigure1が非常にわかりやすい。GQA #1271 と比較して、2~4倍キャッシュを圧縮しつつ、より高い性能を実現。70Bモ ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Transformer
Issue Date: 2024-04-07 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints, Joshua Ainslie+, N_A, arXiv23 SummaryMulti-query attention(MQA)は、単一のkey-value headのみを使用しており、デコーダーの推論を劇的に高速化しています。ただし、MQAは品質の低下を引き起こす可能性があり、さらには、より速い推論のためだけに別個のモデルをトレーニングすることが望ましくない場合もあります。既存のマルチヘッド言語モデルのチェックポイントを、オリジナルの事前トレーニング計量の5%を使用してMQAを持つモデルにアップトレーニングするためのレシピを提案し、さらに、複数のkey-value headを使用するマルチクエリアテンションの一般化であるグループ化クエリアテンション(GQA)を紹介します。アップトレーニングされたGQAが、MQAと同等の速度でマルチヘッドアテンションに匹敵する品質を達成することを示しています。 Comment通常のMulti-Head AttentionがQKVが1対1対応なのに対し、Multi Query Attention (MQA) #1272 は全てのQに対してKVを共有する。一方、GQAはグループごとにKVを共有する点で異なる。MQAは大幅にInfeerence` speedが改善するが、精 ...
#Pocket#NLP#LanguageModel
Issue Date: 2023-11-10 Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs, Qingru Zhang+, N_A, arXiv23 SummaryPASTAは、大規模言語モデル(LLMs)において、ユーザーが指定した強調マークのあるテキストを読むことを可能にする手法です。PASTAは、注意の一部を特定し、再重み付けを適用してモデルの注意をユーザーが指定した部分に向けます。実験では、PASTAがLLMの性能を大幅に向上させることが示されています。 Commentユーザがprompt中で強調したいした部分がより考慮されるようにattention weightを調整することで、より応答性能が向上しましたという話っぽい。かなり重要な技術だと思われる。後でしっかり読む。 ... #MachineLearning#NLP#LanguageModel
Issue Date: 2023-08-08 The Hydra Effect: Emergent Self-repair in Language Model Computations, Thomas McGrath+, N_A, arXiv23 Summary私たちは、言語モデルの内部構造を調査し、言語モデルの計算における特定の効果を示しました。具体的には、1つの層の削除が他の層によって補完される「Hydra効果」と、遅いMLP層が最大尤度トークンを制御する役割を持つことを示しました。また、ドロップアウトを使用しない言語モデルでも同様の効果が見られることを示しました。これらの効果を事実の回想の文脈で分析し、言語モデルの回路レベルの属性付与について考察しました。 CommentLLMからattention layerを一つ取り除くと、後続の層が取り除かれたlayerの機能を引き継ぐような働きをすることがわかった。これはLLMの自己修復機能のようなものであり、HydraEffectと命名された。 ... #NLP#DataDistillation#Zero/FewShotLearning
Issue Date: 2023-07-14 Dataset Distillation with Attention Labels for Fine-tuning BERT, ACL23 Summary本研究では、データセットの蒸留を使用して、元のデータセットのパフォーマンスを保持しながら、ニューラルネットワークを迅速にトレーニングするための小さなデータセットを作成する方法に焦点を当てています。具体的には、事前学習済みのトランスフォーマーを微調整するための自然言語処理タスクの蒸留されたfew-shotデータセットの構築を提案しています。実験結果では、注意ラベルを使用してfew-shotデータセットを作成し、BERTの微調整において印象的なパフォーマンスを実現できることを示しました。例えば、ニュース分類タスクでは、わずか1つのサンプルとわずか1つの勾配ステップのみで、元のデータセットの98.5%のパフォーマンスを達成しました。 CommentDatadistillationしたら、データセットのうち1サンプルのみで、元のデータセットの98.5%の性能を発揮できたという驚異的な研究(まえかわ君) ... #Efficiency/SpeedUp#MachineLearning
Issue Date: 2023-05-20 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, Tri Dao+, N_A, arXiv22 Summaryトランスフォーマーは、長いシーケンスに対して遅く、メモリを多く消費するため、注意アルゴリズムを改善する必要がある。FlashAttentionは、タイリングを使用して、GPUの高帯域幅メモリ(HBM)とGPUのオンチップSRAM間のメモリ読み取り/書き込みの数を減らし、トランスフォーマーを高速にトレーニングできる。FlashAttentionは、トランスフォーマーでより長い文脈を可能にし、より高品質なモデルや、完全に新しい機能を提供する。 Commentより計算効率の良いFlashAttentionを提案 ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Transformer
Issue Date: 2024-04-07 Fast Transformer Decoding: One Write-Head is All You Need, Noam Shazeer, N_A, arXiv19 Summaryマルチヘッドアテンションレイヤーのトレーニングは高速かつ簡単だが、増分推論は大きな"keys"と"values"テンソルを繰り返し読み込むために遅くなることがある。そこで、キーと値を共有するマルチクエリアテンションを提案し、メモリ帯域幅要件を低減する。実験により、高速なデコードが可能で、わずかな品質の低下しかないことが確認された。 CommentMulti Query Attention論文。KVのsetに対して、単一のQueryのみでMulti-Head Attentionを代替する。劇的にDecoderのInferenceが早くなりメモリ使用量が減るが、論文中では言及されていない?ようだが、性能と学習の安定性が課題となるようである。 ... #Article#Efficiency/SpeedUp#NLP#LanguageModel
Issue Date: 2023-12-14 【続】Flash Attentionを使ってLLMの推論を高速・軽量化できるか? Commentuse_cacheがTrue/Falseの場合のFlashAttention2のinference timeとVRAM使用量の傾向をsequence_lengthごとに考察している。use_cacheはKey Value cacheのオンオフを切り替えられるオプションである。autoregresFl ... #Article#Efficiency/SpeedUp#MachineLearning#NLP#Transformer
Issue Date: 2023-07-23 FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning, 2023 SummaryFlashAttention-2は、長いシーケンス長におけるTransformerのスケーリングの問題に対処するために提案された手法です。FlashAttention-2は、非対称なGPUメモリ階層を利用してメモリの節約とランタイムの高速化を実現し、最適化された行列乗算に比べて約2倍の高速化を達成します。また、FlashAttention-2はGPTスタイルのモデルのトレーニングにおいても高速化を実現し、最大225 TFLOPs/sのトレーニング速度に達します。 CommentFlash Attention1よりも2倍高速なFlash Attention 2Flash Attention1はこちらを参照https://arxiv.org/pdf/2205.14135.pdfQK Matrixの計算をブロックに分けてSRAMに送って処理することで、3倍高速化し、メモリ効率を ...
Issue Date: 2023-11-10 Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs, Qingru Zhang+, N_A, arXiv23 SummaryPASTAは、大規模言語モデル(LLMs)において、ユーザーが指定した強調マークのあるテキストを読むことを可能にする手法です。PASTAは、注意の一部を特定し、再重み付けを適用してモデルの注意をユーザーが指定した部分に向けます。実験では、PASTAがLLMの性能を大幅に向上させることが示されています。 Commentユーザがprompt中で強調したいした部分がより考慮されるようにattention weightを調整することで、より応答性能が向上しましたという話っぽい。かなり重要な技術だと思われる。後でしっかり読む。 ... #MachineLearning#NLP#LanguageModel
Issue Date: 2023-08-08 The Hydra Effect: Emergent Self-repair in Language Model Computations, Thomas McGrath+, N_A, arXiv23 Summary私たちは、言語モデルの内部構造を調査し、言語モデルの計算における特定の効果を示しました。具体的には、1つの層の削除が他の層によって補完される「Hydra効果」と、遅いMLP層が最大尤度トークンを制御する役割を持つことを示しました。また、ドロップアウトを使用しない言語モデルでも同様の効果が見られることを示しました。これらの効果を事実の回想の文脈で分析し、言語モデルの回路レベルの属性付与について考察しました。 CommentLLMからattention layerを一つ取り除くと、後続の層が取り除かれたlayerの機能を引き継ぐような働きをすることがわかった。これはLLMの自己修復機能のようなものであり、HydraEffectと命名された。 ... #NLP#DataDistillation#Zero/FewShotLearning
Issue Date: 2023-07-14 Dataset Distillation with Attention Labels for Fine-tuning BERT, ACL23 Summary本研究では、データセットの蒸留を使用して、元のデータセットのパフォーマンスを保持しながら、ニューラルネットワークを迅速にトレーニングするための小さなデータセットを作成する方法に焦点を当てています。具体的には、事前学習済みのトランスフォーマーを微調整するための自然言語処理タスクの蒸留されたfew-shotデータセットの構築を提案しています。実験結果では、注意ラベルを使用してfew-shotデータセットを作成し、BERTの微調整において印象的なパフォーマンスを実現できることを示しました。例えば、ニュース分類タスクでは、わずか1つのサンプルとわずか1つの勾配ステップのみで、元のデータセットの98.5%のパフォーマンスを達成しました。 CommentDatadistillationしたら、データセットのうち1サンプルのみで、元のデータセットの98.5%の性能を発揮できたという驚異的な研究(まえかわ君) ... #Efficiency/SpeedUp#MachineLearning
Issue Date: 2023-05-20 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, Tri Dao+, N_A, arXiv22 Summaryトランスフォーマーは、長いシーケンスに対して遅く、メモリを多く消費するため、注意アルゴリズムを改善する必要がある。FlashAttentionは、タイリングを使用して、GPUの高帯域幅メモリ(HBM)とGPUのオンチップSRAM間のメモリ読み取り/書き込みの数を減らし、トランスフォーマーを高速にトレーニングできる。FlashAttentionは、トランスフォーマーでより長い文脈を可能にし、より高品質なモデルや、完全に新しい機能を提供する。 Commentより計算効率の良いFlashAttentionを提案 ... #Efficiency/SpeedUp#Pocket#NLP#LanguageModel#Transformer
Issue Date: 2024-04-07 Fast Transformer Decoding: One Write-Head is All You Need, Noam Shazeer, N_A, arXiv19 Summaryマルチヘッドアテンションレイヤーのトレーニングは高速かつ簡単だが、増分推論は大きな"keys"と"values"テンソルを繰り返し読み込むために遅くなることがある。そこで、キーと値を共有するマルチクエリアテンションを提案し、メモリ帯域幅要件を低減する。実験により、高速なデコードが可能で、わずかな品質の低下しかないことが確認された。 CommentMulti Query Attention論文。KVのsetに対して、単一のQueryのみでMulti-Head Attentionを代替する。劇的にDecoderのInferenceが早くなりメモリ使用量が減るが、論文中では言及されていない?ようだが、性能と学習の安定性が課題となるようである。 ... #Article#Efficiency/SpeedUp#NLP#LanguageModel
Issue Date: 2023-12-14 【続】Flash Attentionを使ってLLMの推論を高速・軽量化できるか? Commentuse_cacheがTrue/Falseの場合のFlashAttention2のinference timeとVRAM使用量の傾向をsequence_lengthごとに考察している。use_cacheはKey Value cacheのオンオフを切り替えられるオプションである。autoregresFl ... #Article#Efficiency/SpeedUp#MachineLearning#NLP#Transformer
Issue Date: 2023-07-23 FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning, 2023 SummaryFlashAttention-2は、長いシーケンス長におけるTransformerのスケーリングの問題に対処するために提案された手法です。FlashAttention-2は、非対称なGPUメモリ階層を利用してメモリの節約とランタイムの高速化を実現し、最適化された行列乗算に比べて約2倍の高速化を達成します。また、FlashAttention-2はGPTスタイルのモデルのトレーニングにおいても高速化を実現し、最大225 TFLOPs/sのトレーニング速度に達します。 CommentFlash Attention1よりも2倍高速なFlash Attention 2Flash Attention1はこちらを参照https://arxiv.org/pdf/2205.14135.pdfQK Matrixの計算をブロックに分けてSRAMに送って処理することで、3倍高速化し、メモリ効率を ...