Bias
#NLP#LanguageModel#NAACL#PostTraining#PerplexityCurse
Issue Date: 2025-05-02 Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction, Kuniaki Saito+, NAACL25 Comment元ポスト:https://x.com/losnuevetoros/status/1918332232181207096?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qの頑健性に焦点を当てています。LLMsは多肢選択問題において順序に敏感であり、オプションの配置によって性能に大きな差が生じることを示しました。さらに、オプションの配置に対するバイアスを増幅または軽減する方法を特定し、LLMsの予測を改善するアプローチを提案しました。実験により、最大8パーセントポイントの改善が実現されました。 Commentこれはそうだろうなと思っていたけど、ここまで性能に差が出るとは思わなかった。これがもしLLMのバイアスによるもの(2番目の選択肢に正解が多い)の場合、ランダムにソートしたり、平均取ったりしても、そもそもの正解に常にバイアスがかかっているので、結局バイアスがかかった結果しか出ないのでは、と思ってしまう ...
Issue Date: 2025-05-02 Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction, Kuniaki Saito+, NAACL25 Comment元ポスト:https://x.com/losnuevetoros/status/1918332232181207096?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qの頑健性に焦点を当てています。LLMsは多肢選択問題において順序に敏感であり、オプションの配置によって性能に大きな差が生じることを示しました。さらに、オプションの配置に対するバイアスを増幅または軽減する方法を特定し、LLMsの予測を改善するアプローチを提案しました。実験により、最大8パーセントポイントの改善が実現されました。 Commentこれはそうだろうなと思っていたけど、ここまで性能に差が出るとは思わなかった。これがもしLLMのバイアスによるもの(2番目の選択肢に正解が多い)の場合、ランダムにソートしたり、平均取ったりしても、そもそもの正解に常にバイアスがかかっているので、結局バイアスがかかった結果しか出ないのでは、と思ってしまう ...