CurriculumLearning
#ComputerVision
#Pretraining
#Pocket
#NLP
#Supervised-FineTuning (SFT)
#ReinforcementLearning
#MulltiModal
#RLHF
#Reasoning
#LongSequence
#mid-training
#RewardHacking
#PostTraining
#RLVR
#Admin'sPick
#VisionLanguageModel
Issue Date: 2025-07-03 [Paper Note] GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning, GLM-V Team+, arXiv'25 Summary視覚言語モデルGLM-4.1V-Thinkingを発表し、推論中心のトレーニングフレームワークを開発。強力な視覚基盤モデルを構築し、カリキュラムサンプリングを用いた強化学習で多様なタスクの能力を向上。28のベンチマークで最先端のパフォーマンスを達成し、特に難しいタスクで競争力のある結果を示す。モデルはオープンソースとして公開。 Comment元ポスト:https://x.com/sinclairwang1/status/1940331927724232712?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QQwen2.5-VLよりも性能が良いVLM
アーキテクチャはこちら。が、pretraining(データのフィルタリング, マルチモーダル→long context継続事前学習)->SFT(cold startへの対処, reasoning能力の獲得)->RL(RLVRとRLHFの併用によるパフォーマンス向上とAlignment, RewardHackingへの対処,curriculum sampling)など、全体の学習パイプラインの細かいテクニックの積み重ねで高い性能が獲得されていると考えられる。
#Survey
#Pocket
#LanguageModel
#Supervised-FineTuning (SFT)
#ReinforcementLearning
#Chain-of-Thought
#InstructionTuning
#PPO (ProximalPolicyOptimization)
#Reasoning
#LongSequence
#RewardHacking
#GRPO
#Contamination
#VerifiableRewards
Issue Date: 2025-05-06 100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models, Chong Zhang+, arXiv'25 Summary最近の推論言語モデル(RLM)の進展を受けて、DeepSeek-R1が注目を集めているが、その実装詳細は完全にはオープンソース化されていない。これにより、多くの再現研究が行われ、DeepSeek-R1のパフォーマンスを再現しようとする試みが続いている。特に、監視付きファインチューニング(SFT)と強化学習(RLVR)の戦略が探求され、貴重な洞察が得られている。本報告では、再現研究の概要を提供し、データ構築やトレーニング手順の詳細を紹介し、今後の研究の促進を目指す。また、RLMを強化するための追加技術や開発上の課題についても考察する。 Comment元ポスト:https://x.com/_philschmid/status/1918898257406709983?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
サーベイのtakeawayが箇条書きされている。
Issue Date: 2025-07-03 [Paper Note] GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning, GLM-V Team+, arXiv'25 Summary視覚言語モデルGLM-4.1V-Thinkingを発表し、推論中心のトレーニングフレームワークを開発。強力な視覚基盤モデルを構築し、カリキュラムサンプリングを用いた強化学習で多様なタスクの能力を向上。28のベンチマークで最先端のパフォーマンスを達成し、特に難しいタスクで競争力のある結果を示す。モデルはオープンソースとして公開。 Comment元ポスト:https://x.com/sinclairwang1/status/1940331927724232712?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QQwen2.5-VLよりも性能が良いVLM
Issue Date: 2025-05-06 100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models, Chong Zhang+, arXiv'25 Summary最近の推論言語モデル(RLM)の進展を受けて、DeepSeek-R1が注目を集めているが、その実装詳細は完全にはオープンソース化されていない。これにより、多くの再現研究が行われ、DeepSeek-R1のパフォーマンスを再現しようとする試みが続いている。特に、監視付きファインチューニング(SFT)と強化学習(RLVR)の戦略が探求され、貴重な洞察が得られている。本報告では、再現研究の概要を提供し、データ構築やトレーニング手順の詳細を紹介し、今後の研究の促進を目指す。また、RLMを強化するための追加技術や開発上の課題についても考察する。 Comment元ポスト:https://x.com/_philschmid/status/1918898257406709983?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
サーベイのtakeawayが箇条書きされている。