DataMixture
Issue Date: 2025-11-12 [Paper Note] Why Less is More (Sometimes): A Theory of Data Curation, Elvis Dohmatob+, arXiv'25, 2025.11 GPT Summary- 本論文では、データを少なく使う方が良い場合についての理論的枠組みを提案し、小規模な厳選データセットが優れた性能を発揮する理由を探ります。データキュレーション戦略を通じて、ラベルに依存しない・依存するルールのテスト誤差のスケーリング法則を明らかにし、特定の条件下で小規模データが大規模データを上回る可能性を示します。ImageNetでの実証結果を通じて、キュレーションが精度を向上させることを確認し、LLMの数学的推論における矛盾する戦略への理論的説明も提供します。 Comment
元ポスト:
#ComputerVision #Analysis #Pretraining #Pocket #NLP #Dataset #LanguageModel #Evaluation #MultiModal #Reasoning #read-later #VisionLanguageModel
Issue Date: 2025-10-15 [Paper Note] Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training, Junlin Han+, arXiv'25, 2025.09 GPT Summary- 大規模言語モデル(LLMs)は、テキストのみで訓練されながらも視覚的先入観を発展させ、少量のマルチモーダルデータで視覚タスクを実行可能にする。視覚的先入観は、言語の事前訓練中に獲得された知識であり、推論中心のデータから発展する。知覚の先入観は広範なコーパスから得られ、視覚エンコーダーに敏感である。視覚を意識したLLMの事前訓練のためのデータ中心のレシピを提案し、500,000 GPU時間をかけた実験に基づく完全なMLLM構築パイプラインを示す。これにより、視覚的先入観を育成する新しい方法を提供し、次世代のマルチモーダルLLMの発展に寄与する。 Comment
元ポスト:
MLE Bench (Multi-Level Existence Bench)
#Analysis #Pretraining #Pocket #NLP #LanguageModel
Issue Date: 2025-10-03 [Paper Note] Data Mixing Can Induce Phase Transitions in Knowledge Acquisition, Xinran Gu+, arXiv'25, 2025.05 GPT Summary- LLMsの訓練において、知識が豊富なデータセットとウェブスクレイピングデータの混合が、知識獲得において位相転移を示すことを実証。モデルサイズを臨界値まで増加させると、記憶状態が急激に変化し、混合比率が臨界値を超えると急速に記憶が増加。これらの現象は容量配分に起因し、最適なデータ配分がモデルサイズや混合比率によって不連続に変わることを示す。
元ポスト:
ポイント解説:
合成データは適切な規模のモデルと比率でないと利点が現れない
#Pretraining #Pocket #NLP #LanguageModel #SmallModel #mid-training #PostTraining #read-later #Selected Papers/Blogs Issue Date: 2025-09-13 [Paper Note] MobileLLM-R1: Exploring the Limits of Sub-Billion Language Model Reasoners with Open Training Recipes, Changsheng Zhao+, arXiv'25, 2025.09 GPT Summary- 本研究では、推論能力の出現に必要なデータ量について再検討し、約2Tトークンの高品質データで強力な推論モデルが構築できることを示した。MobileLLM-R1というサブビリオンパラメータのモデルは、従来のモデルを大幅に上回る性能を発揮し、特にAIMEスコアで優れた結果を示した。さらに、Qwen3の36Tトークンコーパスに対しても、わずか11.7%のトークンでトレーニングされたMobileLLM-R1-950Mは、複数の推論ベンチマークで競争力を持つ。研究の詳細な情報は公開されている。 Comment
元ポスト:
モデルカードを見ると、optimizerやスケジューリング、ハイパーパラメータの設定、pre/mid/post trainingにおける学習データとDavaMixについて簡潔に記述されており、レシピが公開されているように見える。素晴らしい。
#Pocket #NLP #LanguageModel #ICLR Issue Date: 2025-09-01 [Paper Note] RegMix: Data Mixture as Regression for Language Model Pre-training, Qian Liu+, ICLR'25 GPT Summary- RegMixを提案し、データミクスチャの性能を回帰タスクとして自動的に特定。多様なミクスチャで小モデルを訓練し、最良のミクスチャを用いて大規模モデルを訓練した結果、他の候補を上回る性能を示した。実験により、データミクスチャが性能に大きな影響を与えることや、ウェブコーパスが高品質データよりも良好な相関を持つことを確認。RegMixの自動アプローチが必要であることも示された。 Comment
openreview: https://openreview.net/forum?id=5BjQOUXq7i
#Pretraining #Pocket #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) #OpenWeight #Architecture #PostTraining #Selected Papers/Blogs Issue Date: 2025-08-25 [Paper Note] Motif 2.6B Technical Report, Junghwan Lim+, arXiv'25 GPT Summary- Motif-2.6Bは、26億パラメータを持つ基盤LLMで、長文理解の向上や幻覚の減少を目指し、差分注意やポリノルム活性化関数を採用。広範な実験により、同サイズの最先端モデルを上回る性能を示し、効率的でスケーラブルな基盤LLMの発展に寄与する。 Comment
元ポスト:
HF: https://huggingface.co/Motif-Technologies/Motif-2.6B
- アーキテクチャ
- Differential Transformer, Tianzhu Ye+, N/A, ICLR'25
- [Paper Note] Polynomial Composition Activations: Unleashing the Dynamics of Large
Language Models, Zhijian Zhuo+, arXiv'24
- 学習手法
- Model Merging in Pre-training of Large Language Models, Yunshui Li+, arXiv'25
- 8B token学習するごとに直近6つのcheckpointのelement-wiseの平均をとりモデルマージ。当該モデルに対して学習を継続、ということを繰り返す。これにより、学習のノイズを低減し、突然パラメータがシフトすることを防ぐ
- Effective Long-Context Scaling of Foundation Models, Wenhan Xiong+, N/A, NAACL'24
- Adaptive Base Frequency (RoPEのbase frequencyを10000から500000にすることでlong contextのattention scoreが小さくなりすぎることを防ぐ)
- [Paper Note] MiniCPM: Unveiling the Potential of Small Language Models with Scalable
Training Strategies, Shengding Hu+, arXiv'24
- 事前学習データ
- DataComp-LM: In search of the next generation of training sets for
language models, Jeffrey Li+, arXiv'24
- TxT360, LLM360, 2024.10
- [Paper Note] FineWeb2: One Pipeline to Scale Them All -- Adapting Pre-Training Data Processing to Every Language, Guilherme Penedo+, COLM'25
を利用したモデル。同程度のサイズのモデルとの比較ではかなりのgainを得ているように見える。興味深い。
DatasetのMixtureの比率などについても記述されている。https://github.com/user-attachments/assets/0a26442e-8075-4cbe-8cc1-f1ff471b7356"
/>
#Pretraining #Pocket #NLP #LanguageModel #MultiModal #Scaling Laws #VisionLanguageModel Issue Date: 2025-07-18 [Paper Note] Scaling Laws for Optimal Data Mixtures, Mustafa Shukor+, arXiv'25 GPT Summary- 本研究では、スケーリング法則を用いて任意のターゲットドメインに対する最適なデータ混合比率を決定する方法を提案。特定のドメイン重みベクトルを持つモデルの損失を正確に予測し、LLM、NMM、LVMの事前訓練における予測力を示す。少数の小規模な訓練実行でパラメータを推定し、高価な試行錯誤法に代わる原則的な選択肢を提供。 #Pocket #NLP #Dataset #LanguageModel #ReinforcementLearning #Reasoning #PostTraining #read-later #RLVR #Selected Papers/Blogs #CrossDomain Issue Date: 2025-06-22 [Paper Note] Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective, Zhoujun Cheng+, arXiv'25 GPT Summary- Guruを導入し、数学、コード、科学、論理、シミュレーション、表形式の6つの推論ドメインにわたる92KのRL推論コーパスを構築。これにより、LLM推論のためのRLの信頼性と効果を向上させ、ドメイン間の変動を観察。特に、事前学習の露出が限られたドメインでは、ドメイン内トレーニングが必要であることを示唆。Guru-7BとGuru-32Bモデルは、最先端の性能を達成し、複雑なタスクにおいてベースモデルの性能を改善。データとコードは公開。 Comment
元ポスト:
post-trainingにおけるRLのcross domain(Math, Code, Science, Logic, Tabular)における影響を調査した研究。非常に興味深い研究。詳細は元論文が著者ポスト参照のこと。
Qwenシリーズで実験。以下ポストのまとめ。
- mid trainingにおいて重点的に学習されたドメインはRLによるpost trainingで強い転移を発揮する(Code, Math, Science)
- 一方、mid trainingであまり学習データ中に出現しないドメインについては転移による性能向上は最小限に留まり、in-domainの学習データをきちんと与えてpost trainingしないと性能向上は限定的
- 簡単なタスクはcross domainの転移による恩恵をすぐに得やすい(Math500, MBPP),難易度の高いタスクは恩恵を得にくい
- 各ドメインのデータを一様にmixすると、単一ドメインで学習した場合と同等かそれ以上の性能を達成する
- 必ずしもresponse lengthが長くなりながら予測性能が向上するわけではなく、ドメインによって傾向が異なる
- たとえば、Code, Logic, Tabularの出力は性能が向上するにつれてresponse lengthは縮小していく
- 一方、Science, Mathはresponse lengthが増大していく。また、Simulationは変化しない
- 異なるドメインのデータをmixすることで、最初の数百ステップにおけるrewardの立ち上がりが早く(単一ドメインと比べて急激にrewardが向上していく)転移がうまくいく
- (これは私がグラフを見た感想だが、単一ドメインでlong runで学習した場合の最終的な性能は4/6で同等程度、2/6で向上(Math, Science)
- 非常に難易度の高いmathデータのみにフィルタリングすると、フィルタリング無しの場合と比べて難易度の高いデータに対する予測性能は向上する一方、簡単なOODタスク(HumanEval)の性能が大幅に低下する(特定のものに特化するとOODの性能が低下する)
- RLはpre(mid)-trainingで学習されたreasoning能力を引き出すだけではなく、新規のタスクに対しては新たなreasoning能力を獲得できる
- モデルサイズが小さいと、RLでpost-training後のpass@kのkを大きくするとどこかでサチり、baseモデルと交差するが、大きいとサチらず交差しない
- モデルサイズが大きいとより多様なreasoningパスがunlockされている
- pass@kで観察したところRLには2つのphaseのよつなものが観測され、最初の0-160(1 epoch)ステップではpass@1が改善したが、pass@max_kは急激に性能が劣化した。一方で、160ステップを超えると、双方共に徐々に性能改善が改善していくような変化が見られた
本研究で構築されたGuru Dataset:
https://huggingface.co/datasets/LLM360/guru-RL-92k
math, coding, science, logic, simulation, tabular reasoningに関する高品質、かつverifiableなデータセット。
#ComputerVision #Pocket #NLP #LanguageModel #MultiModal #RLVR Issue Date: 2025-06-05 [Paper Note] MoDoMoDo: Multi-Domain Data Mixtures for Multimodal LLM Reinforcement Learning, Yiqing Liang+, arXiv'25 GPT Summary- 検証可能な報酬を用いた強化学習(RLVR)をマルチモーダルLLMsに適用するためのポストトレーニングフレームワークを提案。異なる視覚と言語の問題を含むデータセットをキュレーションし、最適なデータ混合戦略を導入。実験により、提案した戦略がMLLMの推論能力を大幅に向上させることを示し、分布外ベンチマークで平均5.24%の精度向上を達成。 Comment
元ポスト:
マルチモーダルな設定でRLVRを適用すると、すべてのデータセットを学習に利用する場合より、特定のタスクのみのデータで学習した方が当該タスクでは性能が高くなったり(つまりデータが多ければ多いほど良いわけでは無い)、特定のデータをablationするとOODに対する予測性能が改善したりするなど、データ間で干渉が起きて敵対的になってしまうような現象が起きる。このことから、どのように適切にデータを混合できるか?という戦略の必要性が浮き彫りになり、モデルベースなMixture戦略(どうやらデータの混合分布から学習後の性能を予測するモデルな模様)の性能がuniformにmixするよりも高い性能を示した、みたいな話らしい。
#Pretraining #Pocket #NLP #LanguageModel #Coding #One-Line Notes Issue Date: 2025-11-04 [Paper Note] To Code, or Not To Code? Exploring Impact of Code in Pre-training, Viraat Aryabumi+, arXiv'24, 2024.08 GPT Summary- コードデータが一般的なLLMのパフォーマンスに与える影響を体系的に調査。アブレーション実験により、コードがコーディングタスクを超えた一般化に重要であり、コード品質の向上が全タスクに大きな影響を与えることを確認。特に、コードの追加により自然言語推論で最大8.2%、世界知識で4.2%、生成的勝率で6.6%の向上を示し、コードパフォーマンスでは12倍の改善を達成。研究は、コード品質への投資がポジティブな影響をもたらすことを示唆。 Comment
元ポスト:
事前学習におけるコードの割合を増やすとコーディングタスクの性能は線形に増加する。全体の平均タスク性能の観点で言うとコードの割合を25%にするのが最適で、コードの割合を増やすほど自然言語による推論、世界知識が問われるタスクの性能は悪化していき、コードの割合が75%を超えると急激に悪化する(Figure4)。