Generalization

#Pocket#LanguageModel#MultitaskLearning#Zero/FewShotPrompting#Supervised-FineTuning (SFT)#CrossLingual#ACL
Issue Date: 2023-08-16 Crosslingual Generalization through Multitask Finetuning, Niklas Muennighoff+, N_A, ACL23 Summaryマルチタスクプロンプトフィネチューニング(MTF)は、大規模な言語モデルが新しいタスクに汎化するのに役立つことが示されています。この研究では、マルチリンガルBLOOMとmT5モデルを使用してMTFを実施し、英語のプロンプトを使用して英語および非英語のタスクにフィネチューニングすることで、タスクの汎化が可能であることを示しました。さらに、機械翻訳されたプロンプトを使用してマルチリンガルなタスクにフィネチューニングすることも調査し、モデルのゼロショットの汎化能力を示しました。また、46言語の教師ありデータセットのコンポジットであるxP3も紹介されています。 Comment英語タスクを英語でpromptingしてLLMをFinetuningすると、他の言語(ただし、事前学習で利用したコーパスに出現する言語に限る)で汎化し性能が向上することを示した模様。![Image](https://github.com/user-attachments/assets/44e9cf ...