Generalization

#RecommenderSystems #Embeddings #InformationRetrieval #Pocket #NLP #LanguageModel #RepresentationLearning #InstructionTuning #ContrastiveLearning #ICLR #Decoder
Issue Date: 2025-07-10 [Paper Note] NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models, Chankyu Lee+, ICLR'25 Summaryデコーダー専用のLLMベースの埋め込みモデルNV-Embedは、BERTやT5を上回る性能を示す。アーキテクチャ設計やトレーニング手法を工夫し、検索精度を向上させるために潜在的注意層を提案。二段階の対照的指示調整手法を導入し、検索と非検索タスクの両方で精度を向上。NV-EmbedモデルはMTEBリーダーボードで1位を獲得し、ドメイン外情報検索でも高スコアを達成。モデル圧縮技術の分析も行っている。 CommentDecoder-Only LLMのlast hidden layerのmatrixを新たに導入したLatent Attention Blockのinputとし、Latent Attention BlockはEmbeddingをOutputする。Latent Attention Blockは、last hidden layer (系列長l×dの
matrix)をQueryとみなし、保持しているLatent Array(trainableなmatrixで辞書として機能する;後述の学習においてパラメータが学習される)[^1]をK,Vとして、CrossAttentionによってcontext vectorを生成し、その後MLPとMean Poolingを実施することでEmbeddingに変換する。
image

image

学習は2段階で行われ、まずQAなどのRetrievalタスク用のデータセットをIn Batch negativeを用いてContrastive Learningしモデルの検索能力を高める。その後、検索と非検索タスクの両方を用いて、hard negativeによってcontrastive learningを実施し、検索以外のタスクの能力も高める(下表)。両者において、instructionテンプレートを用いて、instructionによって条件付けて学習をすることで、instructionに応じて生成されるEmbeddingが変化するようにする。また、学習時にはLLMのcausal maskは無くし、bidirectionalにrepresentationを考慮できるようにする。
image

[^1]: 2183 Perceiver-IOにインスパイアされている。
#RecommenderSystems #Embeddings #InformationRetrieval #Pocket #LanguageModel #SequentialRecommendation
Issue Date: 2025-07-08 [Paper Note] Do We Really Need Specialization? Evaluating Generalist Text Embeddings for Zero-Shot Recommendation and Search, Matteo Attimonelli+, arXiv'25 Summary事前学習済み言語モデル(GTEs)は、逐次推薦や製品検索においてファインチューニングなしで優れたゼロショット性能を発揮し、従来のモデルを上回ることを示す。GTEsは埋め込み空間に特徴を均等に分配することで表現力を高め、埋め込み次元の圧縮がノイズを減少させ、専門モデルの性能向上に寄与する。再現性のためにリポジトリを提供。 Comment元ポスト:https://x.com/_reachsumit/status/1942463379639349654?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連:
・2182
#Pocket #LanguageModel #MultitaskLearning #Zero/FewShotPrompting #Supervised-FineTuning (SFT) #CrossLingual #ACL
Issue Date: 2023-08-16 Crosslingual Generalization through Multitask Finetuning, Niklas Muennighoff+, N_A, ACL'23 Summaryマルチタスクプロンプトフィネチューニング(MTF)は、大規模な言語モデルが新しいタスクに汎化するのに役立つことが示されています。この研究では、マルチリンガルBLOOMとmT5モデルを使用してMTFを実施し、英語のプロンプトを使用して英語および非英語のタスクにフィネチューニングすることで、タスクの汎化が可能であることを示しました。さらに、機械翻訳されたプロンプトを使用してマルチリンガルなタスクにフィネチューニングすることも調査し、モデルのゼロショットの汎化能力を示しました。また、46言語の教師ありデータセットのコンポジットであるxP3も紹介されています。 Comment英語タスクを英語でpromptingしてLLMをFinetuningすると、他の言語(ただし、事前学習で利用したコーパスに出現する言語に限る)で汎化し性能が向上することを示した模様。
![Image](https://github.com/user-attachments/assets/44e9cf6e-e80f-4092-af46-ad74c30fe59c)