Live

#MachineLearning #Pocket #NLP #Dataset #TabularData #Evaluation #Selected Papers/Blogs #One-Line Notes
Issue Date: 2025-11-14 [Paper Note] TabArena: A Living Benchmark for Machine Learning on Tabular Data, Nick Erickson+, NeurIPS'25 Spotlight, 2025.06 GPT Summary- TabArenaは、表形式データのための初の生きたベンチマークシステムであり、継続的に更新されることを目的としています。手動でキュレーションされたデータセットとモデルを用いて、公開リーダーボードを初期化しました。結果は、モデルのベンチマークにおける検証方法やハイパーパラメータ設定の影響を示し、勾配ブースティング木が依然として強力である一方、深層学習手法もアンサンブルを用いることで追いついてきていることを観察しました。また、基盤モデルは小規模データセットで優れた性能を発揮し、モデル間のアンサンブルが表形式機械学習の進展に寄与することを示しました。TabArenaは、再現可能なコードとメンテナンスプロトコルを提供し、https://tabarena.ai で利用可能です。 Comment

pj page: https://github.com/autogluon/tabarena
leaderboard: https://huggingface.co/spaces/TabArena/leaderboard

liveデータに基づくベンチマークで、手動で収集された51のtabularデータセットが活用されているとのこと。またあるモデルに対して数百にも登るハイパーパラメータ設定での実験をしアンサンブルをすることで単一モデルが到達しうるピーク性能を見ることに主眼を置いている、またいな感じらしい。そしてやはり勾配ブースティング木が強い。tunedは単体モデルの最も性能が良い設定での性能で、ensembleは複数の設定での同一モデルのアンサンブルによる結果だと思われる。

> TabArena currently consists of:
> 51 manually curated tabular datasets representing real-world tabular data tasks.
> 9 to 30 evaluated splits per dataset.
> 16 tabular machine learning methods, including 3 tabular foundation models.
> 25,000,000 trained models across the benchmark, with all validation and test predictions cached to enable tuning and post-hoc ensembling analysis.
> A live TabArena leaderboard showcasing the results.

openreview: https://openreview.net/forum?id=jZqCqpCLdU



#ComputerVision #Pocket #NLP #Dataset #AIAgents #Evaluation #Safety #ComputerUse #VisionLanguageModel #Safeguard
Issue Date: 2025-11-03 [Paper Note] OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows, Qiushi Sun+, arXiv'25, 2025.10 GPT Summary- モバイルプラットフォームでのエージェントの安全性を確保するため、MobileRisk-Liveという動的サンドボックス環境を導入し、OS-Sentinelという新しいハイブリッド安全性検出フレームワークを提案。OS-Sentinelは、システムレベルの違反検出と文脈リスク評価を統合し、実験で既存手法に対して10%-30%の性能向上を達成。自律型モバイルエージェントの信頼性向上に寄与する重要な洞察を提供。 Comment

dataset: https://huggingface.co/datasets/OS-Copilot/MobileRisk
pj page: https://qiushisun.github.io/OS-Sentinel-Home/

元ポスト:

Loading…


#Pocket #NLP #Dataset #UserBased #AIAgents #Evaluation #read-later #Selected Papers/Blogs #DeepResearch
Issue Date: 2025-10-18 [Paper Note] LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild, Jiayu Wang+, arXiv'25, 2025.10 GPT Summary- 深層研究は、ライブウェブソースから情報を検索・統合し、引用に基づいたレポートを生成する技術であり、評価にはユーザー中心、動的、明確、多面的な原則が必要。既存のベンチマークはこれらを満たしていないため、LiveResearchBenchを導入し、100の専門家がキュレーションしたタスクを提供。さらに、レポート評価のためにDeepEvalを提案し、品質を包括的に評価するプロトコルを統合。これにより、17の深層研究システムの包括的な評価を行い、強みや改善点を明らかにする。 Comment

元ポスト:

Loading…

データセットとソースコードがリリース:

Loading…


dataset: https://huggingface.co/datasets/Salesforce/LiveResearchBench

pj page: https://livedeepresearch.github.io/



#Pocket #NLP #Dataset #LanguageModel #Evaluation #Coding #read-later #Contamination-free #Selected Papers/Blogs Issue Date: 2025-09-12 [Paper Note] LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code, Naman Jain+, ICLR'25 GPT Summary- 本研究では、LLMのコード関連能力を評価するための新しいベンチマーク「LiveCodeBench」を提案。LeetCode、AtCoder、CodeForcesから収集した400の高品質なコーディング問題を用い、コード生成や自己修復、コード実行など多様な能力に焦点を当てている。18のベースLLMと34の指示調整されたLLMを評価し、汚染や過剰適合の問題を実証的に分析。すべてのプロンプトとモデルの結果を公開し、さらなる分析や新しいシナリオの追加を可能にするツールキットも提供。 Comment

関連:
- [Paper Note] LiveCodeBench Pro: How Do Olympiad Medalists Judge LLMs in Competitive Programming?, Zihan Zheng+, NeurIPS'25

pj page: https://livecodebench.github.io

openreview: https://openreview.net/forum?id=chfJJYC3iL

LiveCodeBenchは非常にpopularなコーディング関連のベンチマークだが、readmeに記載されているコマンド通りにベンチマークを実行すると、stop tokenに"###"が指定されているため、マークダウンを出力したLLMの出力が常にtruncateされるというバグがあった模様。

Loading…


#Pocket #NLP #Dataset #LanguageModel #AIAgents #Evaluation #Coding #SoftwareEngineering #read-later #Contamination-free #Selected Papers/Blogs Issue Date: 2025-09-06 [Paper Note] SWE-rebench: An Automated Pipeline for Task Collection and Decontaminated Evaluation of Software Engineering Agents, Ibragim Badertdinov+, arXiv'25 GPT Summary- LLMベースのエージェントのSWEタスクにおける課題として、高品質なトレーニングデータの不足と新鮮なインタラクティブタスクの欠如が挙げられる。これに対処するため、21,000以上のインタラクティブなPythonベースのSWEタスクを含む公的データセットSWE-rebenchを自動化されたパイプラインで構築し、エージェントの強化学習に適したベンチマークを提供。これにより、汚染のない評価が可能となり、いくつかのLLMの性能が過大評価されている可能性を示した。 Comment

pj page: https://swe-rebench.com

元ポスト:

Loading…

コンタミネーションのない最新のIssueを用いて評価した結果、Sonnet 4が最も高性能



#Pocket #NLP #Dataset #LanguageModel #Evaluation #read-later #Selected Papers/Blogs #DeepResearch #Science Issue Date: 2025-08-31 [Paper Note] DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis, Liana Patel+, arXiv'25 GPT Summary- 生成的研究合成の評価のために、DeepScholar-benchというライブベンチマークと自動評価フレームワークを提案。これは、ArXiv論文からクエリを引き出し、関連研究セクションを生成する実際のタスクに焦点を当て、知識合成、検索品質、検証可能性を評価。DeepScholar-baseは強力なベースラインを確立し、他の手法と比較して競争力のあるパフォーマンスを示した。DeepScholar-benchは依然として難易度が高く、生成的研究合成のAIシステムの進歩に重要であることを示す。 Comment

leaderboard: https://guestrin-lab.github.io/deepscholar-leaderboard/leaderboard/deepscholar_bench_leaderboard.html

元ポスト:

Loading…


#Pocket #NLP #Dataset #LanguageModel #AIAgents #Evaluation #read-later #Selected Papers/Blogs #CrossDomain Issue Date: 2025-08-18 [Paper Note] xbench: Tracking Agents Productivity Scaling with Profession-Aligned Real-World Evaluations, Kaiyuan Chen+, arXiv'25 GPT Summary- 「xbench」は、AIエージェントの能力と実世界の生産性のギャップを埋めるために設計された動的な評価スイートで、業界専門家が定義したタスクを用いて商業的に重要なドメインをターゲットにしています。リクルートメントとマーケティングの2つのベンチマークを提示し、エージェントの能力を評価するための基準を確立します。評価結果は継続的に更新され、https://xbench.org で入手可能です。 #Pocket #NLP #Dataset #LanguageModel #Evaluation #Coding #NeurIPS #Contamination-free #Selected Papers/Blogs Issue Date: 2025-06-17 [Paper Note] LiveCodeBench Pro: How Do Olympiad Medalists Judge LLMs in Competitive Programming?, Zihan Zheng+, NeurIPS'25 GPT Summary- 大規模言語モデル(LLMs)は競技プログラミングで人間のエリートを上回るとされるが、実際には重要な限界があることを調査。新たに導入した「LiveCodeBench Pro」ベンチマークにより、LLMsは中程度の難易度の問題で53%のpass@1を達成する一方、難しい問題では0%という結果が得られた。LLMsは実装重視の問題では成功するが、複雑なアルゴリズム的推論には苦労し、誤った正当化を生成することが多い。これにより、LLMsと人間の専門家との間に重要なギャップがあることが明らかになり、今後の改善のための診断が提供される。 Comment

元ポスト:

Loading…

Hardな問題は現状のSoTAモデル(Claude4が含まれていないが)でも正答率0.0%
image

ベンチマークに含まれる課題のカテゴリ
image

実サンプルやケーススタディなどはAppendix参照のこと。

pj page: https://livecodebenchpro.com

アップデート(NeurIPSにaccept):

Loading…


#Pocket #NLP #LanguageModel #Evaluation #ICLR #Contamination-free #Selected Papers/Blogs Issue Date: 2025-05-23 LiveBench: A Challenging, Contamination-Limited LLM Benchmark, Colin White+, ICLR'25 GPT Summary- テストセットの汚染を防ぐために、LLM用の新しいベンチマーク「LiveBench」を導入。LiveBenchは、頻繁に更新される質問、自動スコアリング、さまざまな挑戦的タスクを含む。多くのモデルを評価し、正答率は70%未満。質問は毎月更新され、LLMの能力向上を測定可能に。コミュニティの参加を歓迎。 Comment

テストデータのコンタミネーションに対処できるように設計されたベンチマーク。重要研究



#Article #NLP #Dataset #LanguageModel #Evaluation #Conversation Issue Date: 2025-09-10 From Live Data to High-Quality Benchmarks: The Arena-Hard Pipeline, Li+, 2024.04 Comment

ArenaHardデータセット

ChatbotArenaのデータからコンタミネーションに考慮して定期的に抽出される高品質なreal worldに近いのconversationデータセット。抽出プロセスではpromptの多様性とqualityが担保される形で、200,000のユーザからのpromptが抽出されフィルタリングにかけられる。
多様性という観点では、全てのpromptを OpenAI の `text-embedding-3-small` によってembeddingに変換し、UMAPによって次元圧縮をした後に階層的クラスタリング手法によってトピッククラスタを形成する。各クラスタにはGPT-4-turboで要約が付与され、要約を活用して4000のトピッククラスタを選定する。
続いて、各クラスタに含まれるクエリは品質がバラバラなので、高品質なものを抽出するために以下の観点からLLM-as-a-Judge(GPT-3.5-Turbo, GPT-4-turbo)を用いてフィルタリングを実施する:
```
1. Specificity: Does the prompt ask for a specific output?
2. Domain Knowledge: Does the prompt cover one or more specific domains?
3. Complexity: Does the prompt have multiple levels of reasoning, components, or variables?
4. Problem-Solving: Does the prompt directly involve the AI to demonstrate active problem-solving skills?
5. Creativity: Does the prompt involve a level of creativity in approaching the problem?
6. Technical Accuracy: Does the prompt require technical accuracy in the response?
7. Real-world Application: Does the prompt relate to real-world applications?
```
(観点は元記事から引用)

各観点を満たしていたら1ポイントとし、各promptごとに[0, 7]のスコアが付与される。各トピッククラスタはクラスタ中のpromptの平均スコアによってスコアリングされフィルタリングに活用される。
最終的に250のhigh-qualityなトピッククラスタ(すなわち、スコアが>=6のクラスタ)が選ばれ、各クラスタから2つのサンプルをサンプリングして合計500個のbenchmark promptを得る。
評価をする際は、評価対象のモデルとstrong baseline(GPT-4-0314)のレスポンスを比較し、LLM-as-a-Judge(GPT-4-Turbo, Claude-3-Opus)によってペアワイズの品質データを取得する。position biasに配慮するためにreaponseの位置を入れ替えて各サンプルごとに2回評価するので、このデータは1000個のペアワイズデータとなる。
このペアワイズデータをbootstrap resamplingした上で、Bradley-Terryモデル(=勝敗データからプレイヤーの強さを数値化する統計モデル)でスコアを計算することでスコアを得る。

ArenaHardはMT Benchよりも高い識別力を獲得している。

Imagehttps://github.com/user-attachments/assets/a9bca283-31c2-4606-b59d-b7df60af43f1" />

関連:
- ChatBot Arena, lmsys org, 2023.05
- ChatBot Arenaのデータセット