SmallModel

#EfficiencyImprovement #Pocket #NLP #LanguageModel #NeuralArchitectureSearch
Issue Date: 2025-08-26 [Paper Note] Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search, Yuxian Gu+, arXiv'25 SummaryJet-Nemotronは新しいハイブリッドアーキテクチャの言語モデルで、フルアテンションモデルと同等以上の精度を持ちながら生成スループットを大幅に改善します。Post Neural Architecture Search(PostNAS)を用いて開発され、事前トレーニングされたモデルから効率的にアテンションブロックを探索します。Jet-Nemotron-2Bモデルは、他の先進モデルに対して高い精度を達成し、生成スループットを最大53.6倍向上させました。 Comment元ポスト:https://x.com/iscienceluvr/status/1959832287073403137?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q著者ポスト:https://x.com/hancai_hm/status/1960000017235902722?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q解説:https://x.com/jacksonatkinsx/status/1960090774122483783?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q所見:https://x.com/webbigdata/status/1960392071384326349?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Reasoning #OpenWeight
Issue Date: 2025-07-10 [Paper Note] Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation, Liliang Ren+, arXiv'25 Summary最近の言語モデルの進展により、状態空間モデル(SSM)の効率的なシーケンスモデリングが示されています。本研究では、ゲーテッドメモリユニット(GMU)を導入し、Sambaベースの自己デコーダーからメモリを共有する新しいデコーダーハイブリッドアーキテクチャSambaYを提案します。SambaYはデコーディング効率を向上させ、長文コンテキスト性能を改善し、位置エンコーディングの必要性を排除します。実験により、SambaYはYOCOベースラインに対して優れた性能を示し、特にPhi4-mini-Flash-Reasoningモデルは推論タスクで顕著な成果を上げました。トレーニングコードはオープンソースで公開されています。 CommentHF:https://huggingface.co/microsoft/Phi-4-mini-flash-reasoning元ポスト:https://x.com/_akhaliq/status/1943099901161652238?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #EfficiencyImprovement #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #Quantization
Issue Date: 2025-04-19 BitNet b1.58 2B4T Technical Report, Shuming Ma+, arXiv'25 SummaryBitNet b1.58 2B4Tは、20億パラメータを持つオープンソースの1ビット大規模言語モデルで、4兆トークンで訓練されました。言語理解や数学的推論などのベンチマークで評価され、同サイズのフルプレシジョンLLMと同等の性能を示しつつ、計算効率が向上しています。メモリ、エネルギー消費、デコーディングレイテンシが削減され、モデルの重みはHugging Faceで公開されています。 Comment元ポスト:https://x.com/iscienceluvr/status/1912783876365177235?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q圧倒的省メモリかつcpuでのinference速度も早そう
image・アーキテクチャはTransformerを利用
・Linear layerとしてBitLinear Layerを利用
・重みは{1, 0, -1}の3値をとる
・activationは8bitのintegerに量子化
・Layer Normalizationはsubln normalization 1899 を利用

#Analysis #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #Evaluation #PostTraining #read-later Issue Date: 2025-04-13 A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility, Andreas Hochlehnert+, arXiv'25 Summary推論は言語モデルの重要な課題であり、進展が見られるが、評価手法には透明性や堅牢性が欠けている。本研究では、数学的推論ベンチマークが実装の選択に敏感であることを発見し、標準化された評価フレームワークを提案。再評価の結果、強化学習アプローチは改善が少なく、教師ありファインチューニング手法は強い一般化を示した。再現性を高めるために、関連するコードやデータを公開し、今後の研究の基盤を築く。 Comment元ポスト:https://x.com/wenhuchen/status/1911143014258405420?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QSLMをmath reasoning向けにpost-trainingする場合、RL(既存研究で試されているもの)よりも(大規模モデルからrejection samplingしたreasoning traceを用いて)SFTをする方が同等か性能が良く、結局のところ(おそらく汎化性能が低いという意味で)reliableではなく、かつ(おそらく小規模なモデルでうまくいかないという意味での)scalableではないので、reliableかつscalableなRL手法が不足しているとのこと。

※ 本論文で分析されているのは<=10B以下のSLMである点に注意。10B以上のモデルで同じことが言えるかは自明ではない。
※ DAPO, VAPOなどについても同じことが言えるかも自明ではない。
※ DeepSeek-R1のtechnical reportにおいて、小さいモデルにGRPOを適用してもあまり効果が無かったことが既に報告されている。

image
image
image

・1743
・1719個々のpost-trainingされたRLモデルが具体的にどういう訓練をしたのかは追えていないが、DAPOやDr. GRPO, VAPOの場合はどうなるんだろうか?

・1815
・1876
・1821

Rewardの設定の仕方はどのような影響があるのだろうか(verifiable rewardなのか、neuralモデルによるrewardなのかなど)?

学習のさせ方もどのような影響があるのだろうか(RLでカリキュラムlearningにした場合など)?

検証しているモデルがそれぞれどのような設定で学習されているかまでを見ないとこの辺はわからなそう。

ただなんとなーくの直感だと、SLMを賢くしたいという場合は何らかの賢いモデルの恩恵に預かるしかなく(SFTの場合はそれが大規模なモデルから蒸留したreasoning trace)、SLM+RLの場合はTPMのような思考プロセスを評価してRewardに反映させるようなものを利用しないと、少なくとも小規模なLLMをめちゃ賢くします〜というのはきついんじゃないかなあという感想ではある。
ただ、結局SLMという時点で多くの場合、より賢いパラメータ数の多いLLMが世の中には存在するあるはずなので、RLしないでSFTして蒸留すれば良いんじゃない…?と思ってしまう。
が、多くの場合その賢いLLMはProprietaryなLLMであり、出力を得て自分のモデルをpost-trainingすることは利用規約違反となるため、自前で賢くてパラメータ数の多いLLMを用意できない場合は困ってしまうので、SLMをクソデカパラメータのモデルの恩恵なしで超絶賢くできたら世の中の多くの人は嬉しいよね、とも思う。(斜め読みだが)
サンプル数が少ない(数十件)AIMEやAMCなどのデータはseedの値にとてもsensitiveであり、
image

それらは10種類のseedを用いて結果を平均すると分散が非常に小さくなるので、seedは複数種類利用して平均の性能を見た方がreliableであり
image

temperatureを高くするとピーク性能が上がるが分散も上がるため再現性の課題が増大するが、top-pを大きくすると再現性の問題は現れず性能向上に寄与し
image

既存研究のモデルのtemperatureとtop-pを変化させ実験するとperformanceに非常に大きな変化が出るため、モデルごとに最適な値を選定して比較をしないとunfairであることを指摘。
image

また、ハードウェアの面では、vLLMのようなinference engineはGPU typeやmemoryのconfigurationに対してsensitiveでパフォーマンスが変わるだけでなく、
image

評価に利用するフレームワークごとにinference engineとprompt templateが異なるためこちらもパフォーマンスに影響が出るし、
image

max output tokenの値を変化させると性能も変わり、prompt templateを利用しないと性能が劇的に低下する。
image

これらのことから著者らはreliableな評価のために下記を提案しており、
image

実際にさまざまな条件をfair comparisonとなるように標準化して評価したところ
image

上の表のような結果となった。この結果は、
・DeepSeekR1-DistilledをRLしてもSFTと比較したときに意味のあるほどのパフォーマンスの向上はないことから、スケーラブル、かつ信頼性のあるRL手法がまだ不足しており
・大規模なパラメータのモデルのreasoning traceからSFTをする方法はさまざまなベンチマークでロバストな性能(=高い汎化性能)を持ち、RLと比べると現状はRLと比較してよりパラダイムとして成熟しており
・(AIME24,25を比較するとSFTと比べてRLの場合performanceの低下が著しいので)RLはoverfittingしやすく、OODなベンチマークが必要しっかりと評価の枠組みを標準化してfair comparisonしていかないと、RecSys業界の二の舞になりそう(というかもうなってる?)。

またこの研究で分析されているのは小規模なモデル(<=10B)に対する既存研究で用いられた一部のRL手法や設定の性能だけ(真に示したかったらPhisics of LLMのような完全にコントロール可能なサンドボックスで実験する必要があると思われる)なので、DeepSeek-R1のように、大規模なパラメータ(数百B)を持つモデルに対するRLに関して同じことが言えるかは自明ではない点に注意。
#EfficiencyImprovement #Pocket #NLP #LanguageModel #Scheduler Issue Date: 2025-08-25 [Paper Note] MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies, Shengding Hu+, arXiv'24 Summary急成長する大規模言語モデル(LLMs)の開発におけるコストの懸念から、小規模言語モデル(SLMs)の可能性が注目されている。本研究では、MiniCPMという1.2Bおよび2.4Bの非埋め込みパラメータバリアントを紹介し、これらが7B-13BのLLMsと同等の能力を持つことを示す。モデルのスケーリングには広範な実験を、データのスケーリングにはWarmup-Stable-Decay(WSD)学習率スケジューラを導入し、効率的なデータ-モデルスケーリング法を研究した。MiniCPMファミリーにはMiniCPM-DPO、MiniCPM-MoE、MiniCPM-128Kが含まれ、優れたパフォーマンスを発揮している。MiniCPMモデルは公開されている。 CommentWarmup-Stable-Decay (WSD) #Survey #NLP #LanguageModel Issue Date: 2024-11-07 A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness, Fali Wang+, arXiv'24 Summary大規模言語モデル(LLM)は多様なタスクで能力を示すが、パラメータサイズや計算要求から制限を受け、プライバシーやリアルタイムアプリケーションに課題がある。これに対し、小型言語モデル(SLM)は低遅延、コスト効率、簡単なカスタマイズが可能で、特に専門的なドメインにおいて有用である。SLMの需要が高まる中、定義や応用に関する包括的な調査が不足しているため、SLMを専門的なタスクに適したモデルとして定義し、強化するためのフレームワークを提案する。 Commentimageimage #Pocket #NLP #LanguageModel #NeurIPS Issue Date: 2023-11-14 Cappy: Outperforming and Boosting Large Multi-Task LMs with a Small Scorer, Bowen Tan+, N_A, NeurIPS'23 Summary大規模言語モデル(LLMs)はマルチタスキングに優れた性能を示していますが、パラメータ数が多く計算リソースを必要とし、効率的ではありません。そこで、小規模なスコアラーであるCappyを導入し、独立して機能するかLLMsの補助として使用することでパフォーマンスを向上させました。Cappyはファインチューニングやパラメータへのアクセスを必要とせず、さまざまなタスクで高い性能を発揮します。実験結果では、Cappyは独立したタスクや複雑なタスクで大きなLLMsを上回り、他のLLMsとの連携も可能です。 Comment360MパラメータでさまざまなタスクでLLMに勝つっぽいのでおもしろそうだし実用性もありそう #Article #NLP #LanguageModel #OpenWeight #OpenSource Issue Date: 2025-08-20 OLMo-2-0425-1B-early-training, allenai, 2025.08 Comment元ポスト:https://x.com/allen_ai/status/1957518243045818432?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QOLPO 2 1Bモデルの10000step/21B tokenごとの事前学習時のチェックポイント群。(0--40000step, 0--63B tokenizerの4つが存在している模様)。事前学習のearly stageの研究用にリリース。興味深いたとえば
・2340
・1996

を試してみたりできるのだろうか。関連:
・1250
・1797
#Article #Pretraining #NLP #Dataset #LanguageModel #OpenWeight Issue Date: 2025-08-19 NVIDIA Nemotron Nano 2 and the Nemotron Pretraining Dataset v1, 2025.08 Comment元ポスト:https://x.com/gm8xx8/status/1957583208494579909?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q事前学習に利用されたデータも公開されているとのこと(Nemotron-CC):
https://x.com/okoge_kaz/status/1957604137379742022?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q解説:https://x.com/hillbig/status/1958290562160996688?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Article #NLP #LanguageModel #OpenWeight Issue Date: 2025-08-15 Introducing Gemma 3 270M: The compact model for hyper-efficient AI, Google, 2025.05 Comment元ポスト:https://x.com/ramin_m_h/status/1956032347708576116?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Article #MachineTranslation #NLP #LanguageModel #MultiLingual #OpenWeight Issue Date: 2025-07-18 Seed-X-Instruct-7B, ByteDance-Seed, 2025.07 Comment元ポスト:https://x.com/teortaxestex/status/1946056084709359653?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QMTに特化したMultilingual SLM。7Bモデルだがベンチマーク上では他の大規模なモデルと同等以上。テクニカルレポート: https://github.com/ByteDance-Seed/Seed-X-7B/blob/main/Technical_Report.pdf #Article #Tutorial #NLP #LanguageModel #Reasoning #LongSequence #MultiLingual #OpenWeight #OpenSource Issue Date: 2025-07-09 SmolLM3: smol, multilingual, long-context reasoner, HuggingFace, 2025.07 Comment元ポスト:https://x.com/thom_wolf/status/1942670704278732978?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QSmolLM3を構築する際の詳細なレシピ(アーキテクチャ、データ、data mixture, 3 stageのpretraining(web, code, mathの割合と品質をステージごとに変え、stable->stable->decayで学習), midtraining(long context->reasoning, post training(sft->rl), ハイブリッドreasoningモデルの作り方、評価など)が説明されている学習/評価スクリプトなどがリリース:
https://x.com/_lewtun/status/1950209751066742982?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Article #NLP #LanguageModel #Slide Issue Date: 2025-05-28 SSII2025 [OS1-03] PFNにおけるSmall Language Modelの開発, 鈴木 脩司, 画像センシングシンポジウム, 2025.05 Comment元ポスト:https://x.com/_stakaya/status/1927588359217844702?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q関連
・1827
・1828
・1999
・766先行研究を元に仮説を立てて、有望なアプローチを取る意思決定が非常に勉強になる。
Scaling Lawsが不確実性のある意思決定において非常に有用な知見となっている。同じようにPruningとKnowledge Distilationを実施した事例として下記が挙げられる
・1873
#Article #Analysis #NLP #LanguageModel #Mathematics #RLVR Issue Date: 2025-05-27 Spurious Rewards: Rethinking Training Signals in RLVR, Shao+, 2025.05 Comment元ポスト:https://x.com/stellalisy/status/1927392717593526780?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q参考(考察): https://x.com/weiliu99/status/1930826904522875309?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q参考(考察):
https://x.com/g_k_swamy/status/1945159211752562739?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

こちらでもQwen2.5 MATH 7b を用いて検証しているが、コンタミネーションの問題が仮に本当だとしたら、どう影響するだろうか。スレッド中のグラフもMATH500(Qwen2.5においてコンタミの可能性がある)の性能を示している。
#Article #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #Reasoning #OpenWeight #GRPO Issue Date: 2025-05-01 Phi-4-reasoning Technical Report, 2025.04 Comment元ポスト:https://x.com/dimitrispapail/status/1917731614899028190?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qこちらの解説が非常によくまとまっている:
https://x.com/_philschmid/status/1918216082231320632?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

が、元ポストでもテクニカルペーパー中でもo3-miniのreasoning traceをSFTに利用してCoTの能力を強化した旨が記述されているが、これはOpenAIの利用規約に違反しているのでは…?