Sparse
#Pocket
#NLP
#LanguageModel
#Attention
#Architecture
Issue Date: 2025-10-08 [Paper Note] vAttention: Verified Sparse Attention, Aditya Desai+, arXiv'25, 2025.10 GPT Summary- vAttentionは、トップ-$k$とランダムサンプリングを統合した新しいスパースアテンションメカニズムで、ユーザー指定の$(\epsilon, \delta)$保証を提供し、近似精度を向上させる。これにより、スパースアテンションの実用性と信頼性が向上し、フルアテンションと同等の品質を保ちながら、最大20倍のスパース性を実現。推論シナリオでも迅速なデコーディングが可能で、実験により性能の向上が確認された。コードはオープンソースで公開されている。 Comment
#ComputerVision #Pocket #NLP #LanguageModel #Attention #LongSequence #VideoGeneration/Understandings #VisionLanguageModel
Issue Date: 2025-10-04 [Paper Note] VideoNSA: Native Sparse Attention Scales Video Understanding, Enxin Song+, arXiv'25, 2025.10 GPT Summary- VideoNSAは、ビデオ理解のためにNative Sparse Attentionを適用し、長い時間スケールでの一貫性を向上させる手法。216Kのビデオ指示データセットでQwen2.5-VLをエンドツーエンドでトレーニングし、テキストには密な注意、ビデオにはNSAを使用。トークン圧縮や従来のスパースベースラインと比較して、長いビデオ理解や時間的推論で性能が向上。アブレーション分析により、信頼性のあるスケーリングや注意の最適配分などの重要な発見が得られた。 Comment
#ComputerVision #EfficiencyImprovement #Pocket #Transformer #Attention #DiffusionModel #Architecture #NeurIPS #VideoGeneration/Understandings
Issue Date: 2025-09-27 [Paper Note] Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation, Shuo Yang+, NeurIPS'25 Spotlight, 2025.05 GPT Summary- Diffusion Transformers(DiTs)の動画生成におけるレイテンシーの問題を解決するため、重要トークンの特定精度を最大化し計算の無駄を最小化するトレーニング不要のフレームワークSVG2を提案。SVG2は意味に基づくトークンのクラスタリングと再配置を行い、計算効率を向上させる。これにより、HunyuanVideoおよびWan 2.1でそれぞれ最大2.30倍および1.89倍のスピードアップを達成し、PSNRを維持。 Comment
Issue Date: 2025-10-08 [Paper Note] vAttention: Verified Sparse Attention, Aditya Desai+, arXiv'25, 2025.10 GPT Summary- vAttentionは、トップ-$k$とランダムサンプリングを統合した新しいスパースアテンションメカニズムで、ユーザー指定の$(\epsilon, \delta)$保証を提供し、近似精度を向上させる。これにより、スパースアテンションの実用性と信頼性が向上し、フルアテンションと同等の品質を保ちながら、最大20倍のスパース性を実現。推論シナリオでも迅速なデコーディングが可能で、実験により性能の向上が確認された。コードはオープンソースで公開されている。 Comment
元ポスト:
#ComputerVision #Pocket #NLP #LanguageModel #Attention #LongSequence #VideoGeneration/Understandings #VisionLanguageModel
Issue Date: 2025-10-04 [Paper Note] VideoNSA: Native Sparse Attention Scales Video Understanding, Enxin Song+, arXiv'25, 2025.10 GPT Summary- VideoNSAは、ビデオ理解のためにNative Sparse Attentionを適用し、長い時間スケールでの一貫性を向上させる手法。216Kのビデオ指示データセットでQwen2.5-VLをエンドツーエンドでトレーニングし、テキストには密な注意、ビデオにはNSAを使用。トークン圧縮や従来のスパースベースラインと比較して、長いビデオ理解や時間的推論で性能が向上。アブレーション分析により、信頼性のあるスケーリングや注意の最適配分などの重要な発見が得られた。 Comment
元ポスト:
#ComputerVision #EfficiencyImprovement #Pocket #Transformer #Attention #DiffusionModel #Architecture #NeurIPS #VideoGeneration/Understandings
Issue Date: 2025-09-27 [Paper Note] Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation, Shuo Yang+, NeurIPS'25 Spotlight, 2025.05 GPT Summary- Diffusion Transformers(DiTs)の動画生成におけるレイテンシーの問題を解決するため、重要トークンの特定精度を最大化し計算の無駄を最小化するトレーニング不要のフレームワークSVG2を提案。SVG2は意味に基づくトークンのクラスタリングと再配置を行い、計算効率を向上させる。これにより、HunyuanVideoおよびWan 2.1でそれぞれ最大2.30倍および1.89倍のスピードアップを達成し、PSNRを維持。 Comment
元ポスト:
pj page: https://svg-project.github.io/v2/
Q, Kそれぞれについて独立してkmeansクラスタリングを実施し、意味的に類似したQ, Kをクラスタ化し、map上で散らばっているトークンの配置を整頓して計算機上で効率的に扱えるようにし、各クラスタのcentroidをattention scoreの計算に用いてクラスタ内のトークンのスコアを近似することで計算を効率化します、といった話な模様。また、クリティカルなクラスタとそうでは無いものがあるので、p個のクリティカルなクラスタを選択しさらに効率化をする模様。
#Article
#NLP
#LanguageModel
#Attention
#OpenWeight
#Reference Collection
Issue Date: 2025-09-29
DeepSeek-V3.2-Exp: Boosting Long-Context Efficiency with DeepSeek Sparse Attention, DeepSeek-AI, 2025.09
Comment
元ポスト:
DeepSeek Sparse Attentionポイント解説:
解説:
DSA図解:
ポイント解説:
公式ポスト: