UserModeling

#RecommenderSystems #NLP #LanguageModel #CTRPrediction #RAG(RetrievalAugmentedGeneration) #LongSequence #WWW
Issue Date: 2025-03-27 ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation, Jianghao Lin+, WWW'24 Summary本論文では、ゼロショットおよび少ショットの推薦タスクにおいて、大規模言語モデル(LLMs)を強化する新しいフレームワーク「ReLLa」を提案。LLMsが長いユーザー行動シーケンスから情報を抽出できない問題に対処し、セマンティックユーザー行動検索(SUBR)を用いてデータ品質を向上させる。少ショット設定では、検索強化指示チューニング(ReiT)を設計し、混合トレーニングデータセットを使用。実験により、少ショットReLLaが従来のCTRモデルを上回る性能を示した。 Comment・1839

のベースラインLLMでCTR予測する際の性能を向上した研究。

そもそもLLMでCTR予測をする際は、ユーザのデモグラ情報とアクティビティログなどのユーザプロファイルと、ターゲットアイテムの情報でpromptingし、yes/noを出力させる。yes/noトークンのスコアに対して2次元のソフトマックスを適用して[0, 1]のスコアを得ることで、CTR予測をする。
image

この研究ではコンテキストにユーザのログを入れても性能がスケールしない問題に対処するために
image

直近のアクティビティログではなく、ターゲットアイテムと意味的に類似したアイテムに関するログをコンテキストに入れ(SUBR)、zero shotのinferenceに活用する。
image

few-shot recommendation(少量のクリックスルーログを用いてLLMをSFTすることでCTR予測する手法)においては、上述の意味的に類似したアイテムをdata augmentationに利用し(i.e, promptに埋め込むアクティビティログの量を増やして)学習する。
image

zeroshotにおいて、SUBRで性能改善。fewshot recommendationにといて、10%未満のデータで既存の全データを用いる手法を上回る。また、下のグラフを見るとpromptに利用するアクティビティログの量が増えるほど性能が向上するようになった。
image

ただし、latencyは100倍以上なのでユースケースが限定される。
image
#Embeddings #Pocket #NLP #EMNLP
Issue Date: 2018-01-01 Multi-View Unsupervised User Feature Embedding for Social Media-based Substance Use Prediction, Ding+, EMNLP'17 #MachineLearning #DomainAdaptation #EMNLP
Issue Date: 2017-12-31 Human Centered NLP with User-Factor Adaptation, Lynn+, EMNLP'17 Comment126 Frustratingly easy domain adaptationをPersonalization用に拡張している。

Frustratingly easy domain adaptationでは、domain adaptationを行うときに、discreteなクラスに分けてfeature vectorを作る(age>28など)が、Personalizationを行う際は、このようなdiscreteな表現よりも、continousな表現の方が表現力が高いので良い(feature vectorとそのままのageを使いベクトルをcompositionするなど)。

psychologyの分野だと、人間のfactorをdiscreteに表現して、ある人物を表現することはnoisyだと知られているので、continuousなユーザfactorを使って、domain adaptationしましたという話。



やってることは単純で、feature vectorを作る際に、各クラスごとにfeature vectorをコピーして、feature augmentationするのではなく、continuousなuser factorとの積をとった値でfeature augmentationするというだけ。

これをするだけで、Sentiment analysis, sarcasm detection, PP-attachmentなどのタスクにおいて、F1スコアで1〜3ポイント程度のgainを得ている。特に、sarcasm detectionではgainが顕著。

pos tagging, stance detection(against, neutral, forなどの同定)では効果がなく、stance detectionではそもそもdiscrete adaptationの方が良い結果。



正直、もっと色々やり方はある気がするし、user embeddingを作り際などは5次元程度でしか作ってないので、これでいいのかなぁという気はする・・・。

user factorの次元数増やすと、その分feature vectorのサイズも大きくなるから、あまり次元数を増やしたりもできないのかもしれない。

#WWW Issue Date: 2017-12-28 Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access, Michlmayr+, WWW'07, 2007.05 Commentsocial bookmarkのタグを使ってどのようにユーザモデルを作成する手法が提案されている。タグの時系列も扱っているみたいなので、参考になりそう。 #Article #Tutorial Issue Date: 2017-12-28 Machine Learning for User Modeling, User modeling and User-adapted Interaction, [Webb+, 2001], 2001.03 Commentimage

image

image

image

image