<h2 id=Best-of-N> Best-of-N</h2><div class="visible-content"> #Pocket #NLP #LanguageModel #Ensemble #Test-Time Scaling #read-later


Issue Date: 2025-09-26 [Paper Note] Best-of-$\infty$ – Asymptotic Performance of Test-Time Compute, Junpei Komiyama+, arXiv’25, 2025.09 GPT Summary- 大規模言語モデル(LLMs)におけるBest-of-$N$を多数決に基づいて研究し、$N \to \infty$の限界(Best-of-$\infty$)を分析。無限のテスト時間を必要とする問題に対処するため、回答の一致に基づく適応生成スキームを提案し、推論時間を効率的に配分。さらに、複数のLLMの重み付きアンサンブルを拡張し、最適な重み付けを混合整数線形計画として定式化。実験によりアプローチの有効性を実証。 Comment<p>pj page:

https://jkomiyama.github.io/bestofinfty/

</p><p>元ポスト:

Loading…

</p></span>

#Analysis #Pocket #NLP #LanguageModel #Test-Time Scaling #SamplingParams #MajorityVoting


Issue Date: 2025-09-24 [Paper Note] Optimizing Temperature for Language Models with Multi-Sample Inference, Weihua Du+, ICML’25, 2025.02 GPT Summary- マルチサンプル集約戦略を用いて、LLMの最適な温度を自動的に特定する手法を提案。従来の方法に依存せず、モデルアーキテクチャやデータセットを考慮した温度の役割を分析。新たに提案するエントロピーに基づく指標は、固定温度のベースラインを上回る性能を示し、確率過程モデルを用いて温度とパフォーマンスの関係を解明。 Comment<p>openreview:

https://openreview.net/forum?id=rmWpE3FrHW¬eId=h9GETXxWDB

</p></span>

</div>

if ('IntersectionObserver' in window) {
  const observer = new IntersectionObserver((entries, obs) => {
    entries.forEach(entry => {
      if (entry.isIntersecting) {
        const el = entry.target;
        const html = el.getAttribute('data-embed');
        if (html) {
          const placeholder = el.querySelector('.tweet-placeholder');
          if (placeholder) placeholder.remove();

          el.innerHTML = html.trim();

          if (window.twttr?.widgets?.load) {
            window.twttr.widgets.load(el);
          }
        }
        obs.unobserve(el); // 処理済みは監視解除
      }
    });
  }, {
    rootMargin: '500px 0px', // 画面手前200pxで読み込み開始
    threshold: 0
  });

  tweets.forEach(tweet => observer.observe(tweet));

} else {
  // IntersectionObserver未対応ブラウザ用のフォールバック
  function lazyLoadFallback() {
    tweets.forEach(el => {
      if (el.getAttribute('data-embed') && el.getBoundingClientRect().top < window.innerHeight) {
        const html = el.getAttribute('data-embed');
        const loadingImg = el.querySelector('.tweet-loading');
        if (loadingImg) loadingImg.remove();
        el.innerHTML = html.trim();
        el.removeAttribute('data-embed');
        if (window.twttr?.widgets?.load) {
          window.twttr.widgets.load(el);
        }
      }
    });
  }
  window.addEventListener('scroll', lazyLoadFallback);
  lazyLoadFallback();
}   }); </script>