Document
#Multi#DocumentSummarization#Pocket#NLP#VariationalAutoEncoder
Issue Date: 2018-10-05 Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization, Li+, AAAI17 #DocumentSummarization#NeuralNetwork#Supervised#Pocket#NLP
Issue Date: 2018-01-01 Coarse-to-Fine Attention Models for Document Summarization, Ling+ (with Rush), ACL17 Workshop on New Frontiers in Summarization #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Get To The Point: Summarization with Pointer-Generator Networks, See+, ACL17 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/get-to-the-point-summarization-with-pointergenerator-networks/1単語の生成と単語のコピーの両方を行えるハイブリッドなニューラル文書 ...
Issue Date: 2018-10-05 Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization, Li+, AAAI17 #DocumentSummarization#NeuralNetwork#Supervised#Pocket#NLP
Issue Date: 2018-01-01 Coarse-to-Fine Attention Models for Document Summarization, Ling+ (with Rush), ACL17 Workshop on New Frontiers in Summarization #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Get To The Point: Summarization with Pointer-Generator Networks, See+, ACL17 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/get-to-the-point-summarization-with-pointergenerator-networks/1単語の生成と単語のコピーの両方を行えるハイブリッドなニューラル文書 ...
#Multi#DocumentSummarization#NeuralNetwork#Supervised#GraphBased#NLP#GraphConvolutionalNetwork#Extractive
Issue Date: 2017-12-31 Graph-based Neural Multi-Document Summarization, Yasunaga+, arXiv17 CommentGraph Convolutional Network (GCN)を使って、MDSやりましたという話。 既存のニューラルなMDSモデル [Cao et al., 2015, 2017] では、sentence間のrelationが考慮できていなかったが、GCN使って考慮した。 また、MDSの学習デー ... #Single#DocumentSummarization#DomainAdaptation#Supervised#NLP#Extractive
Issue Date: 2018-01-01 Learning from Numerous Untailored Summaries, Kikuchi+, PRICAI16 CommentNew York Times Annotated Corpus(NYTAC)に含まれる大量の正解要約データを利用する方法を提案。 NYTACには650,000程度の人手で生成された参照要約が付与されているが、このデータを要約の訓練データとして活用した事例はまだ存在しないので、やりましたという話。 ... #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu+, ACL16 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/incorporating-copying-mechanism-in-sequene-to-sequence-learning単語のコピーと生成、両方を行えるネットワークを提案。 locati ... #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Distraction-Based Neural Networks for Modeling Documents, Chen+, IJCAI16 CommentNeuralなモデルで「文書」の要約を行う研究。 提案手法では、attention-basedなsequence-to-sequenceモデルにdistractionと呼ばれる機構を導入することを提案。 distractionを導入するmotivationは、入力文書中の異なる情報を横断 ... #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Extractive
Issue Date: 2017-12-31 Neural Summarization by Extracting Sentences and Words, Cheng+, ACL16 CommentExtractiveかつNeuralな単一文書要約ならベースラインとして使用した方がよいかも ... #DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-28 Distraction-Based Neural Networks for Modeling Documents, Chen+, IJCAI16 CommentNeuralなモデルで「文書」の要約を行う研究。 提案手法では、attention-basedなsequence-to-sequenceモデルにdistractionと呼ばれる機構を導入することを提案。 distractionを導入するmotivationは、入力文書中の異なる情報を横断Dist ... #Single#DocumentSummarization#NeuralNetwork#Sentence#NLP#Dataset#Abstractive
Issue Date: 2017-12-28 LCSTS: A large scale chinese short text summarizatino dataset, Hu+, EMNLP15 CommentLarge Chinese Short Text Summarization (LCSTS) datasetを作成 データセットを作成する際は、Weibo上の特定のorganizationの投稿の特徴を利用。 Weiboにニュースを投稿する際に、投稿の冒頭にニュースのvery short sCop ... #NeuralNetwork#Embeddings#NLP
Issue Date: 2017-12-28 A hierarchical neural autoencoder for paragraphs and documents, Li+, ACL15 Comment複数文を生成(今回はautoencoder)するために、standardなseq2seq LSTM modelを、拡張したという話。 要は、paragraph/documentのrepresentationが欲しいのだが、アイデアとしては、word-levelの情報を扱うLSTM layerとtr ... #NeuralNetwork#Embeddings#SentimentAnalysis#NLP
Issue Date: 2017-12-28 Document Modeling with Gated Recurrent Neural Network for Sentiment Classification, Tang+, EMNLP15 Commentword level -> sentence level -> document level のrepresentationを求め、documentのsentiment classificationをする話。 documentのRepresentationを生成するときに参考になるやも。 sen ... #Multi#Single#DocumentSummarization#Unsupervised#GraphBased#NLP#Extractive
Issue Date: 2018-01-01 CTSUM: Extracting More Certain Summaries for News Articles, Wan+, SIGIR14 Comment要約を生成する際に、情報の”確実性”を考慮したモデルCTSUMを提案しましたという論文(今まではそういう研究はなかった) ``` "However, it seems that Obama will not use the platform to relaunch his stalled d解説ス ... #Single#DocumentSummarization#Supervised#NLP#Abstractive#Extractive
Issue Date: 2018-01-01 Learning to Generate Coherent Sumamry with Discriminative Hidden Semi-Markov Model, Nishikawa+, COLING14 CommentHidden-semi-markovモデルを用いた単一文書要約手法を提案。 通常のHMMでは一つの隠れ状態に一つのunit(要約の文脈だと文?)が対応するが、hidden-semi-markov(HSMM)モデルでは複数のunitを対応づけることが可能。 隠れ状態に対応するunitを文だと考評価に ... #Multi#DocumentSummarization#NLP#IntegerLinearProgramming (ILP)#Extractive
Issue Date: 2018-01-17 A study of global inference algorithms in multi-document summarization, Ryan McDonald, ECIR07 Comment文書要約をナップサック問題として定式化し、厳密解(動的計画法、ILP Formulation)、近似解(Greedy)を求める手法を提案。 ... #Multi#DocumentSummarization#NLP#Extractive
Issue Date: 2018-01-17 A Formal Model for Information Selection in Multi-Sentence Text Extraction, Filatova+, COLING04 Comment初めて文書要約を最大被覆問題として定式化した研究。 ... #Single#DocumentSummarization#GraphBased#NLP#Extractive
Issue Date: 2018-01-01 TextRank: Bringing Order into Texts, Mihalcea+, EMNLP04 CommentPageRankベースの手法で、キーワード抽出/文書要約 を行う手法。 キーワード抽出/文書要約 を行う際には、ノードをそれぞれ 単語/文 で表現する。 ノードで表現されている 単語/文 のsimilarityを測り、ノード間のedgeの重みとすることでAffinity Graphを構築。 あ単一文 ... #DocumentSummarization#NLP
Issue Date: 2018-01-21 Cut and paste based text summarization, Jing+, NAACL00 CommentAbstractiveなSummarizationの先駆け的研究。 AbstractiveなSummarizationを研究するなら、押さえておいたほうが良い。 ... #Single#DocumentSummarization#NLP#Extractive
Issue Date: 2018-01-01 Automatic condensation of electronic publications by sentence selection, Brandow+, Information Processing & Management95 Comment報道記事要約において、自動要約システムがLead文に勝つのがhardだということを示した研究 ... #DocumentSummarization#Supervised#NLP#Extractive
Issue Date: 2017-12-31 A Trainable Document Summarizer, Kupiec+, SIGIR95 #Article#DocumentSummarization#NLP#Extractive
Issue Date: 2018-01-17 Machine-made index for technical literature: an experiment, IBM Journal of Research and Development, 1958. Comment初期の要約研究。Luhnらの研究よりはcitation countが少ない。 ... #Article#Multi#Single#DocumentSummarization#Unsupervised#GraphBased#NLP#Extractive
Issue Date: 2018-01-01 LexRank: Graph-based Lexical Centrality as Salience in Text Summarization, Erkan+, Journal of Artificial Intelligence Research, 2004 Comment代表的なグラフベースな(Multi) Document Summarization手法。 ほぼ #214 と同じ手法。 2種類の手法が提案されている: * [LexRank] tf-idfスコアでsentenceのbag-of-wordsベクトルを作り、cosine similarit ... #Article#DocumentSummarization#Classic#NLP
Issue Date: 2018-01-01 The automatic creation of literature abstracts, Luhn, IBM Journal of Research Development, 1958 Comment文書要約研究初期の研究 ... #Article#DocumentSummarization#StructuredLearning#DomainAdaptation#Supervised#NLP#Extractive
Issue Date: 2017-12-31 転移学習による抽出型要約の精度向上, 西川+, 情報処理学会研究報告, 2011 Comment構造学習を利用した文書要約モデル #126 なども利用し転移学習を行なっている。 ... #Article#Single#DocumentSummarization#Supervised#NLP
Issue Date: 2017-12-31 Document Summarization using Conditional Random Fields, Shen+, IJCAI07 CommentCRFを用いて単一文書要約の手法を考えましたという話。 気持ちとしては、 ``` 1. Supervisedなモデルでは、当時は原文書中の各文を独立に2値分類して要約を生成するモデルが多く、sentence間のrelationが考慮できていなかった 2. unsupervisedな手法で ... #Article#NeuralNetwork#NLP#QuestionAnswering
Issue Date: 2017-12-28 Teaching Machines to Read and Comprehend, Hermann+, NIPS 2015 Commentだいぶ前に読んだので割とうろおぼえ。 CNN/DailyMailデータセットの作成を行なった論文(最近Neuralな文”書”要約の学習でよく使われるやつ)。 CNN/DailyMailにはニュース記事に対して、人手で作成した要約が付与されており、要約中のEntityを穴埋めにするなどして、 ... #Article#RecommenderSystems
Issue Date: 2017-12-28 SCENE: A Scalable Two-Stage Personalized News Recommendation System, Li et al., SIGIR’11 Comment・ニュース推薦には3つのチャレンジがある。 1. スケーラビリティ より高速なreal-time processing 2. あるニュース記事を読むと、続いて読む記事に影響を与える 3. popularityとrecencyが時間経過に従い変化するので、これらをどう扱うか これらに対 ... #Article#RecommenderSystems
Issue Date: 2017-12-28 A semantic-expansion approach to personalized knowledge recommendation, Liang, Yang, Chen and Ku, Decision Support Systems, 2007 Comment・traditionalなkeywordベースでマッチングするアプローチだと,単語間の意味的な関係によって特定の単語のoverweightやunderweightが発生するので,advancedなsemanticsを考慮した手法が必要なので頑張りますという論文. ... #Article#RecommenderSystems
Issue Date: 2017-12-28 Combination of Web page recommender systems, Goksedef, Gunduz-oguducu, Elsevier, 2010 Comment・traditionalなmethodはweb usage or web content mining techniquesを用いているが,ニュースサイトなどのページは日々更新されるのでweb content mining techniquesを用いてモデルを更新するのはしんどい.ので,web us ... #Article#RecommenderSystems
Issue Date: 2017-12-28 Neural Networks for Web Content Filtering, 2002, Lee, Fui and Fong, IEEE Intelligent Systems Comment・ポルノコンテンツのフィルタリングが目的. 提案手法はgeneral frameworkなので他のコンテンツのフィルタリングにも使える. ・NNを採用する理由は,robustだから(様々な分布にfitする).Webpageはnoisyなので. ・trainingのためにpornographic ...
Issue Date: 2017-12-31 Graph-based Neural Multi-Document Summarization, Yasunaga+, arXiv17 CommentGraph Convolutional Network (GCN)を使って、MDSやりましたという話。 既存のニューラルなMDSモデル [Cao et al., 2015, 2017] では、sentence間のrelationが考慮できていなかったが、GCN使って考慮した。 また、MDSの学習デー ... #Single#DocumentSummarization#DomainAdaptation#Supervised#NLP#Extractive
Issue Date: 2018-01-01 Learning from Numerous Untailored Summaries, Kikuchi+, PRICAI16 CommentNew York Times Annotated Corpus(NYTAC)に含まれる大量の正解要約データを利用する方法を提案。 NYTACには650,000程度の人手で生成された参照要約が付与されているが、このデータを要約の訓練データとして活用した事例はまだ存在しないので、やりましたという話。 ... #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Incorporating Copying Mechanism in Sequence-to-Sequence Learning, Gu+, ACL16 Comment解説スライド:https://www.slideshare.net/akihikowatanabe3110/incorporating-copying-mechanism-in-sequene-to-sequence-learning単語のコピーと生成、両方を行えるネットワークを提案。 locati ... #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-31 Distraction-Based Neural Networks for Modeling Documents, Chen+, IJCAI16 CommentNeuralなモデルで「文書」の要約を行う研究。 提案手法では、attention-basedなsequence-to-sequenceモデルにdistractionと呼ばれる機構を導入することを提案。 distractionを導入するmotivationは、入力文書中の異なる情報を横断 ... #Single#DocumentSummarization#NeuralNetwork#Supervised#NLP#Extractive
Issue Date: 2017-12-31 Neural Summarization by Extracting Sentences and Words, Cheng+, ACL16 CommentExtractiveかつNeuralな単一文書要約ならベースラインとして使用した方がよいかも ... #DocumentSummarization#NeuralNetwork#Supervised#NLP#Abstractive
Issue Date: 2017-12-28 Distraction-Based Neural Networks for Modeling Documents, Chen+, IJCAI16 CommentNeuralなモデルで「文書」の要約を行う研究。 提案手法では、attention-basedなsequence-to-sequenceモデルにdistractionと呼ばれる機構を導入することを提案。 distractionを導入するmotivationは、入力文書中の異なる情報を横断Dist ... #Single#DocumentSummarization#NeuralNetwork#Sentence#NLP#Dataset#Abstractive
Issue Date: 2017-12-28 LCSTS: A large scale chinese short text summarizatino dataset, Hu+, EMNLP15 CommentLarge Chinese Short Text Summarization (LCSTS) datasetを作成 データセットを作成する際は、Weibo上の特定のorganizationの投稿の特徴を利用。 Weiboにニュースを投稿する際に、投稿の冒頭にニュースのvery short sCop ... #NeuralNetwork#Embeddings#NLP
Issue Date: 2017-12-28 A hierarchical neural autoencoder for paragraphs and documents, Li+, ACL15 Comment複数文を生成(今回はautoencoder)するために、standardなseq2seq LSTM modelを、拡張したという話。 要は、paragraph/documentのrepresentationが欲しいのだが、アイデアとしては、word-levelの情報を扱うLSTM layerとtr ... #NeuralNetwork#Embeddings#SentimentAnalysis#NLP
Issue Date: 2017-12-28 Document Modeling with Gated Recurrent Neural Network for Sentiment Classification, Tang+, EMNLP15 Commentword level -> sentence level -> document level のrepresentationを求め、documentのsentiment classificationをする話。 documentのRepresentationを生成するときに参考になるやも。 sen ... #Multi#Single#DocumentSummarization#Unsupervised#GraphBased#NLP#Extractive
Issue Date: 2018-01-01 CTSUM: Extracting More Certain Summaries for News Articles, Wan+, SIGIR14 Comment要約を生成する際に、情報の”確実性”を考慮したモデルCTSUMを提案しましたという論文(今まではそういう研究はなかった) ``` "However, it seems that Obama will not use the platform to relaunch his stalled d解説ス ... #Single#DocumentSummarization#Supervised#NLP#Abstractive#Extractive
Issue Date: 2018-01-01 Learning to Generate Coherent Sumamry with Discriminative Hidden Semi-Markov Model, Nishikawa+, COLING14 CommentHidden-semi-markovモデルを用いた単一文書要約手法を提案。 通常のHMMでは一つの隠れ状態に一つのunit(要約の文脈だと文?)が対応するが、hidden-semi-markov(HSMM)モデルでは複数のunitを対応づけることが可能。 隠れ状態に対応するunitを文だと考評価に ... #Multi#DocumentSummarization#NLP#IntegerLinearProgramming (ILP)#Extractive
Issue Date: 2018-01-17 A study of global inference algorithms in multi-document summarization, Ryan McDonald, ECIR07 Comment文書要約をナップサック問題として定式化し、厳密解(動的計画法、ILP Formulation)、近似解(Greedy)を求める手法を提案。 ... #Multi#DocumentSummarization#NLP#Extractive
Issue Date: 2018-01-17 A Formal Model for Information Selection in Multi-Sentence Text Extraction, Filatova+, COLING04 Comment初めて文書要約を最大被覆問題として定式化した研究。 ... #Single#DocumentSummarization#GraphBased#NLP#Extractive
Issue Date: 2018-01-01 TextRank: Bringing Order into Texts, Mihalcea+, EMNLP04 CommentPageRankベースの手法で、キーワード抽出/文書要約 を行う手法。 キーワード抽出/文書要約 を行う際には、ノードをそれぞれ 単語/文 で表現する。 ノードで表現されている 単語/文 のsimilarityを測り、ノード間のedgeの重みとすることでAffinity Graphを構築。 あ単一文 ... #DocumentSummarization#NLP
Issue Date: 2018-01-21 Cut and paste based text summarization, Jing+, NAACL00 CommentAbstractiveなSummarizationの先駆け的研究。 AbstractiveなSummarizationを研究するなら、押さえておいたほうが良い。 ... #Single#DocumentSummarization#NLP#Extractive
Issue Date: 2018-01-01 Automatic condensation of electronic publications by sentence selection, Brandow+, Information Processing & Management95 Comment報道記事要約において、自動要約システムがLead文に勝つのがhardだということを示した研究 ... #DocumentSummarization#Supervised#NLP#Extractive
Issue Date: 2017-12-31 A Trainable Document Summarizer, Kupiec+, SIGIR95 #Article#DocumentSummarization#NLP#Extractive
Issue Date: 2018-01-17 Machine-made index for technical literature: an experiment, IBM Journal of Research and Development, 1958. Comment初期の要約研究。Luhnらの研究よりはcitation countが少ない。 ... #Article#Multi#Single#DocumentSummarization#Unsupervised#GraphBased#NLP#Extractive
Issue Date: 2018-01-01 LexRank: Graph-based Lexical Centrality as Salience in Text Summarization, Erkan+, Journal of Artificial Intelligence Research, 2004 Comment代表的なグラフベースな(Multi) Document Summarization手法。 ほぼ #214 と同じ手法。 2種類の手法が提案されている: * [LexRank] tf-idfスコアでsentenceのbag-of-wordsベクトルを作り、cosine similarit ... #Article#DocumentSummarization#Classic#NLP
Issue Date: 2018-01-01 The automatic creation of literature abstracts, Luhn, IBM Journal of Research Development, 1958 Comment文書要約研究初期の研究 ... #Article#DocumentSummarization#StructuredLearning#DomainAdaptation#Supervised#NLP#Extractive
Issue Date: 2017-12-31 転移学習による抽出型要約の精度向上, 西川+, 情報処理学会研究報告, 2011 Comment構造学習を利用した文書要約モデル #126 なども利用し転移学習を行なっている。 ... #Article#Single#DocumentSummarization#Supervised#NLP
Issue Date: 2017-12-31 Document Summarization using Conditional Random Fields, Shen+, IJCAI07 CommentCRFを用いて単一文書要約の手法を考えましたという話。 気持ちとしては、 ``` 1. Supervisedなモデルでは、当時は原文書中の各文を独立に2値分類して要約を生成するモデルが多く、sentence間のrelationが考慮できていなかった 2. unsupervisedな手法で ... #Article#NeuralNetwork#NLP#QuestionAnswering
Issue Date: 2017-12-28 Teaching Machines to Read and Comprehend, Hermann+, NIPS 2015 Commentだいぶ前に読んだので割とうろおぼえ。 CNN/DailyMailデータセットの作成を行なった論文(最近Neuralな文”書”要約の学習でよく使われるやつ)。 CNN/DailyMailにはニュース記事に対して、人手で作成した要約が付与されており、要約中のEntityを穴埋めにするなどして、 ... #Article#RecommenderSystems
Issue Date: 2017-12-28 SCENE: A Scalable Two-Stage Personalized News Recommendation System, Li et al., SIGIR’11 Comment・ニュース推薦には3つのチャレンジがある。 1. スケーラビリティ より高速なreal-time processing 2. あるニュース記事を読むと、続いて読む記事に影響を与える 3. popularityとrecencyが時間経過に従い変化するので、これらをどう扱うか これらに対 ... #Article#RecommenderSystems
Issue Date: 2017-12-28 A semantic-expansion approach to personalized knowledge recommendation, Liang, Yang, Chen and Ku, Decision Support Systems, 2007 Comment・traditionalなkeywordベースでマッチングするアプローチだと,単語間の意味的な関係によって特定の単語のoverweightやunderweightが発生するので,advancedなsemanticsを考慮した手法が必要なので頑張りますという論文. ... #Article#RecommenderSystems
Issue Date: 2017-12-28 Combination of Web page recommender systems, Goksedef, Gunduz-oguducu, Elsevier, 2010 Comment・traditionalなmethodはweb usage or web content mining techniquesを用いているが,ニュースサイトなどのページは日々更新されるのでweb content mining techniquesを用いてモデルを更新するのはしんどい.ので,web us ... #Article#RecommenderSystems
Issue Date: 2017-12-28 Neural Networks for Web Content Filtering, 2002, Lee, Fui and Fong, IEEE Intelligent Systems Comment・ポルノコンテンツのフィルタリングが目的. 提案手法はgeneral frameworkなので他のコンテンツのフィルタリングにも使える. ・NNを採用する理由は,robustだから(様々な分布にfitする).Webpageはnoisyなので. ・trainingのためにpornographic ...