SyntheticData
Issue Date: 2025-10-09 [Paper Note] h1: Bootstrapping LLMs to Reason over Longer Horizons via Reinforcement Learning, Sumeet Ramesh Motwani+, arXiv'25, 2025.10 GPT Summary- 大規模言語モデルは短期的な推論には強いが、長期的な推論では性能が低下する。既存のアプローチはスケールしにくい。本研究では、短期データを用いて長期的な推論能力を向上させるスケーラブルな方法を提案。単純な問題を合成し、複雑な多段階依存チェーンを構成。結果のみの報酬でモデルを訓練し、カリキュラムを通じて精度を向上。実験により、GSM8Kでの訓練がGSM-SymbolicやMATH-500などのベンチマークでの精度を最大2.06倍向上させることを示した。理論的には、カリキュラムRLがサンプルの複雑さにおいて指数的な改善を達成することを示し、既存データを用いた長期的な問題解決の効率的な道を提案。 Comment
元ポスト:
著者ポスト:
#Embeddings #InformationRetrieval #Pocket #Transformer #Reasoning #Test-Time Scaling #COLM #read-later #Selected Papers/Blogs #Encoder
Issue Date: 2025-10-08 [Paper Note] ReasonIR: Training Retrievers for Reasoning Tasks, Rulin Shao+, COLM'25, 2025.04 GPT Summary- ReasonIR-8Bは、一般的な推論タスク向けに特別に訓練された初のリトリーバーであり、合成データ生成パイプラインを用いて挑戦的なクエリとハードネガティブを作成。これにより、BRIGHTベンチマークで新たな最先端成果を達成し、RAGタスクでも他のリトリーバーを上回る性能を示す。トレーニングレシピは一般的で、将来のLLMへの拡張が容易である。コード、データ、モデルはオープンソース化されている。 Comment
元ポスト:
Llama3.1-8Bをbidirectional encoderに変換してpost-trainingしている。
関連:
- [Paper Note] Generative Representational Instruction Tuning, Niklas Muennighoff+, ICLR'25, 2024.02
#Multi #Pocket #NLP #Dataset #LanguageModel #ReinforcementLearning #COLM #One-Line Notes
Issue Date: 2025-10-08 [Paper Note] Synthetic Data Generation & Multi-Step RL for Reasoning & Tool Use, Anna Goldie+, COLM'25, 2025.04 GPT Summary- 段階的強化学習(SWiRL)を提案し、複数のテキスト生成や推論ステップを通じて大規模言語モデルの性能を向上させる手法を紹介。SWiRLは、各アクションに対するサブ軌道を生成し、合成データフィルタリングと強化学習最適化を適用。実験では、GSM8KやHotPotQAなどのタスクでベースラインを上回る精度を達成し、タスク間での一般化も示された。 Comment
openreview: https://openreview.net/forum?id=oN9STRYQVa
元ポスト:
従来のRLではテキスト生成を1ステップとして扱うことが多いが、複雑な推論やtool useを伴うタスクにおいては複数ステップでの最適化が必要となる。そのために、多段階の推論ステップのtrajectoryを含むデータを作成し、同データを使いRLすることによって性能が向上したという話な模様。RLをする際には、stepごとにRewardを用意するようである。また、現在のstepの生成を実施する際には過去のstepの情報に基づいて生成する方式のようである。
元ポスト:
#Multi #Pocket #NLP #Dataset #LanguageModel #LLMAgent #MCP Issue Date: 2025-10-04 [Paper Note] TOUCAN: Synthesizing 1.5M Tool-Agentic Data from Real-World MCP Environments, Zhangchen Xu+, arXiv'25, 2025.10 GPT Summary- Toucanは、約500の実世界のモデルコンテキストプロトコルから合成された150万の軌跡を含む、最大の公開ツールエージェントデータセットを提供。多様で現実的なタスクを生成し、マルチツールおよびマルチターンのインタラクションに対応。5つのモデルを用いてツール使用クエリを生成し、厳密な検証を通じて高品質な出力を保証。Toucanでファインチューニングされたモデルは、BFCL V3ベンチマークで優れた性能を示し、MCP-Universe Benchでの進展を実現。 Comment
元ポスト:
dataset: https://huggingface.co/datasets/Agent-Ark/Toucan-1.5M
#Pocket #NLP #LanguageModel #Alignment #Safety #One-Line Notes Issue Date: 2025-10-04 [Paper Note] Large Reasoning Models Learn Better Alignment from Flawed Thinking, ShengYun Peng+, arXiv'25, 2025.10 GPT Summary- RECAPは、誤った推論を覆し安全な応答に導くための強化学習手法。合成生成された反対整合CoTを用いて訓練し、安全性と堅牢性を向上させる。RECAPで訓練されたモデルは自己反省が頻繁で、適応攻撃にも強い。 Comment
元ポスト:
安全でない(欠陥のある)Reasoning traceを修復するような学習をさせることでよりロバストなsafety algnmentが実現できます、といった話な模様
著者ポスト:
#Analysis #Pretraining #Pocket #NLP #LanguageModel #DataMixture Issue Date: 2025-10-03 [Paper Note] Demystifying Synthetic Data in LLM Pre-training: A Systematic Study of Scaling Laws, Benefits, and Pitfalls, Feiyang Kang+, arXiv'25, 2025.10 GPT Summary- 合成データ技術はLLMのトレーニングデータの供給制限を克服する可能性を持つ。本研究では、自然なウェブデータと合成データの混合を比較し、言い換えた合成データのみでの事前トレーニングは自然なデータよりも速くないことを示した。1/3の言い換えた合成データと2/3の自然データの混合が、より効率的なトレーニングを可能にすることが分かった。教科書スタイルの合成データは小さなデータ予算で高い損失をもたらし、合成データの最適な比率はモデルサイズとデータ予算に依存する。結果は合成データの効果を明らかにし、実用的なガイダンスを提供する。 Comment
元ポスト:
ポイント解説:
合成データは適切な規模のモデルと比率でないと利点が現れない
#Pretraining #Pocket #NLP #LanguageModel #Reasoning #read-later Issue Date: 2025-09-25 [Paper Note] Thinking Augmented Pre-training, Liang Wang+, arXiv'25, 2025.09 GPT Summary- 思考の軌跡を用いてテキストデータを拡張する「Thinking augmented Pre-Training(TPT)」を提案し、LLMのデータ効率を向上。TPTはトレーニングデータを効果的に増加させ、高品質なトークンの学習を容易にする。実験により、TPTがLLMの性能を大幅に向上させ、特に3Bパラメータモデルで推論ベンチマークの性能を10%以上改善することを示した。 Comment
元ポスト:
(斜め読みしかまだできていないが)2節に存在するプロンプトを用いて、ドキュメント全体をcontextとして与え、context中に存在する複雑な情報に関して深い分析をするようにthinking traceを生成し、生成したtrace tをconcatしてnext token predictionで事前学習する模様。数学データで検証し事前学習が3倍トークン量 vs. downstreamタスク(GSM8K, MATH)性能の観点効率的になっただかでなく(これは事後学習の先取りをしているみたいなものな気がするのでそうなるだろうなという気がする)、おなじトークン量で学習したモデルをSFTした場合でも、提案手法の方が性能が良かった模様(Table2, こっちの方が個人的には重要な気がしている)。
解説:
#Pretraining #Pocket #NLP #LanguageModel #read-later Issue Date: 2025-09-22 [Paper Note] Synthetic bootstrapped pretraining, Zitong Yang+, arXiv'25, 2025.09 GPT Summary- Synthetic Bootstrapped Pretraining(SBP)は、文書間の関係を学習し、新しいコーパスを合成する言語モデルの事前学習手法です。従来の事前学習は単一文書内の因果関係に焦点を当てていますが、SBPは文書間の相関関係を効率的にモデル化します。3Bパラメータのモデルを用いた実験で、SBPは強力なベースラインを改善し、合成された文書は単なる言い換えを超えた新しい物語を構築することが示されました。SBPは自然なベイズ的解釈を許容し、関連文書間の潜在的な概念を学習します。 Comment
元ポスト:
ポイント解説:
興味深い。
著者ポスト:
conceptを学習するという観点では以下が関連している気がするが、アプローチが大きく異なる:
- Large Concept Models: Language Modeling in a Sentence Representation Space, Meta, 2024.12
#Pocket #NLP #LanguageModel #Safety #ACL #PostTraining Issue Date: 2025-09-21 [Paper Note] Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training, Youliang Yuan+, ACL'25, 2024.07 GPT Summary- 本研究では、LLMsの安全性調整における拒否ポジションバイアスの問題を解決するために、「Decoupled Refusal Training(DeRTa)」という新しいアプローチを提案。DeRTaは、有害な応答プレフィックスを用いた最大尤度推定と強化された遷移最適化を組み込み、モデルが不適切なコンテンツを認識し拒否する能力を強化します。実証評価では、提案手法が安全性を向上させ、攻撃に対する防御でも優れた性能を示しました。 Comment
元ポスト:
一般的なSafety Tuningでは有害なpromptが与えられた時に安全な応答が生成される確率を最大化する(MLE)が、安全な応答は冒頭の数トークンにSorry, I apologize等の回答を拒絶するトークンが集中する傾向にあり、応答を拒否するか否かにポジションバイアスが生じてしまう。これにより、応答の途中で潜在的な危険性を検知し、応答を拒否することができなくなってしまうという課題が生じる。
これを解決するために、RTOを提案している。有害なpromptの一部をprefixとし、その後にSafetyなレスポンスをconcatするような応答を合成しMLEに活用することで、応答の途中でも応答を拒否するような挙動を学習することができる。prefixを利用することで、
- prefixを用いることで安全なレスポンスに追加のcontextを付与することができ、潜在的な危険性の識別力が高まり、
- prefixの長さは任意なので、応答のどのポジションからでも危険性識別できるようになり、
- モデルが有害な応答を開始したことをシームレスに認識して安全な回答を生成するように遷移させられる
といった利点があるが、1つの学習サンプルにつき一つの遷移(i.e., prefixと安全な応答の境目は1サンプルにつき一箇所しかないので)しか学習できないことである。このため、RTOでは、レスポンスの全てのポジションにおいてsorryが生成される確率を最大化することで、モデルが全てのポジションで継続的に危険性を識別できる能力を高めるような工夫をする。
目的関数は以下で、Harmful Prefixがgivenな時に安全な回答が生成される確率を最大化するMLEの項に対して(r^hat_<kはランダムに選択される[0,回答の長さ]の定数)、全ての位置t以後のポジションにおいてsorryの生成確率を最大化する(tは全ての可能なポジションに対して変化させてsummationする)ような項を追加(=RTO)する。
実験の結果は、全体を見る限り、helpfulnessを損なうことなく、安全な応答を生成できるようになっており、DPO等のその他のAlignment手法よりも性能が良さそうである。
以下の研究で報告されている現象と似ている:
- The First Few Tokens Are All You Need: An Efficient and Effective
Unsupervised Prefix Fine-Tuning Method for Reasoning Models, Ke Ji+, arXiv'25
すなわち、reasoning traceの最初の数トークンが全体の品質に大きく関わるという話
#EfficiencyImprovement #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #LLMAgent #Reasoning #On-Policy Issue Date: 2025-09-18 [Paper Note] WebSailor: Navigating Super-human Reasoning for Web Agent, Kuan Li+, arXiv'25 GPT Summary- WebSailorは、LLMのトレーニングにおいて人間の認知的限界を超えるためのポストトレーニング手法であり、複雑な情報探索タスクでの性能を向上させる。構造化サンプリングや情報の難読化、DUPOを用いて高不確実性タスクを生成し、オープンソースエージェントの能力を大幅に上回ることを目指す。 #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #LLMAgent Issue Date: 2025-09-18 [Paper Note] WebDancer: Towards Autonomous Information Seeking Agency, Jialong Wu+, arXiv'25 GPT Summary- 複雑な問題解決のために、エンドツーエンドの情報探索エージェントを構築する一貫したパラダイムを提案。4つの主要ステージ(データ構築、軌跡サンプリング、教師ありファインチューニング、強化学習)を経て、WebDancerを実装。GAIAとWebWalkerQAでの評価により、強力なパフォーマンスを示し、トレーニングパラダイムの有効性を確認。コードは公開予定。 #GraphBased #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #LLMAgent #LongSequence #read-later Issue Date: 2025-09-10 [Paper Note] WebExplorer: Explore and Evolve for Training Long-Horizon Web Agents, Junteng Liu+, arXiv'25 GPT Summary- 本研究では、情報探索のためのデータ不足に対処するため、WebExplorerというモデルベースの探索手法を提案。これにより、複雑なクエリ-回答ペアを生成し、高度なウェブエージェントWebExplorer-8Bを開発。128Kのコンテキスト長を持ち、最先端の情報探索ベンチマークで高いパフォーマンスを達成。特に、WebExplorer-8Bは他の大規模モデルを上回る精度を示し、長期的な問題解決に向けた実用的なアプローチを提供することが確認された。 Comment
元ポスト:
評価で利用されているデータ:
- [Paper Note] BrowseComp: A Simple Yet Challenging Benchmark for Browsing Agents, Jason Wei+, arXiv'25
- [Paper Note] Humanity's Last Exam, Long Phan+, arXiv'25
学習データの合成方法が肝
#Multi #ComputerVision #Pocket #NLP #Dataset #LanguageModel #LLMAgent #VisionLanguageModel Issue Date: 2025-08-24 [Paper Note] ToolVQA: A Dataset for Multi-step Reasoning VQA with External Tools, Shaofeng Yin+, arXiv'25 GPT Summary- 本研究では、実世界のツール使用能力を向上させるために、23Kのインスタンスからなる大規模マルチモーダルデータセット「ToolVQA」を提案。ToolVQAは、実際の視覚的コンテキストと多段階推論タスクを特徴とし、ToolEngineを用いて人間のようなツール使用推論をシミュレート。7B LFMを微調整した結果、テストセットで優れたパフォーマンスを示し、GPT-3.5-turboを上回る一般化能力を持つことが確認された。 Comment
人間による小規模なサンプル(イメージシナリオ、ツールセット、クエリ、回答、tool use trajectory)を用いてFoundation Modelに事前知識として与えることで、よりrealisticなscenarioが合成されるようにした上で新たなVQAを4k程度合成。その後10人のアノテータによって高品質なサンプルにのみFilteringすることで作成された、従来よりも実世界の設定に近く、reasoningの複雑さが高いVQAデータセットな模様。
具体的には、image contextxが与えられた時に、ChatGPT-4oをコントローラーとして、前回のツールとアクションの選択をgivenにし、人間が作成したプールに含まれるサンプルの中からLongest Common Subsequence (LCS) による一致度合いに基づいて人手によるサンプルを選択し、動的にcontextに含めることで多様なで実世界により近しいmulti step tooluseなtrajectoryを合成する、といった手法に見える。pp.4--5に数式や図による直感的な説明がある。なお、LCSを具体的にどのような文字列に対して、どのような前処理をした上で適用しているのかまでは追えていない。
元ポスト:
#Pretraining #Pocket #NLP #LanguageModel #read-later Issue Date: 2025-08-19 [Paper Note] BeyondWeb: Lessons from Scaling Synthetic Data for Trillion-scale Pretraining, Pratyush Maini+, arXiv'25 GPT Summary- 合成データ生成フレームワーク「BeyondWeb」を提案し、高品質な合成データの生成が可能であることを示す。BeyondWebは、従来のデータセットを超える性能を発揮し、トレーニング速度も向上。特に、3Bモデルが8Bモデルを上回る結果を示す。合成データの品質向上には多くの要因を最適化する必要があり、単純なアプローチでは限界があることを指摘。 Comment
元ポスト:
#ComputerVision #Pocket #NLP #Dataset #LanguageModel #LLMAgent #Evaluation #MultiModal #VisionLanguageModel #DeepResearch Issue Date: 2025-08-14 [Paper Note] WebWatcher: Breaking New Frontier of Vision-Language Deep Research Agent, Xinyu Geng+, arXiv'25 GPT Summary- WebWatcherは、視覚と言語の推論能力を強化したマルチモーダルエージェントであり、情報探索の困難さに対処する。合成マルチモーダル軌跡を用いた効率的なトレーニングと強化学習により、深い推論能力を向上させる。新たに提案されたBrowseComp-VLベンチマークでの実験により、WebWatcherは複雑なVQAタスクで他のエージェントを大幅に上回る性能を示した。 Comment
元ポスト:
公式:
#ComputerVision #Pocket #NLP #ReinforcementLearning #MultiModal #RLVR #VisionLanguageModel Issue Date: 2025-08-10 [Paper Note] StructVRM: Aligning Multimodal Reasoning with Structured and Verifiable Reward Models, Xiangxiang Zhang+, arXiv'25 GPT Summary- StructVRMは、複雑な多質問推論タスクにおいて、部分的な正確性を評価するための構造化された検証可能な報酬モデルを導入。サブ質問レベルのフィードバックを提供し、微妙な部分的なクレジットスコアリングを可能にする。実験により、Seed-StructVRMが12のマルチモーダルベンチマークのうち6つで最先端のパフォーマンスを達成したことが示された。これは、複雑な推論におけるマルチモーダルモデルの能力向上に寄与する。 Comment
元ポスト:
複数のsub-questionが存在するような複雑な問題に対して、既存のRLVRにおける全体に対してbinary rewardを適用する方法は報酬が荒すぎるため、よりfine-grainedなverifiableな報酬を設計することで、学習を安定化し性能も向上
以下がverifierのサンプル
general purposeなreal worldに対するmultimodal reasoningシステムを作成するには高品質で多様なデータが必要なので、以下のようなパイプラインを用いて、学習データを合成している模様。後で読む。サマリが元ポストに記載されているので全体像をざっくり知りたい場合は参照のこと。
#Pocket #NLP #LanguageModel #ReinforcementLearning #Reasoning #SyntheticDataGeneration #GRPO Issue Date: 2025-08-10 [Paper Note] MathSmith: Towards Extremely Hard Mathematical Reasoning by Forging Synthetic Problems with a Reinforced Policy, Shaoxiong Zhan+, arXiv'25 GPT Summary- MathSmithという新しいフレームワークを提案し、LLMの数学的推論を強化するために新しい問題をゼロから合成。既存の問題を修正せず、PlanetMathから概念と説明をランダムにサンプリングし、データの独立性を確保。9つの戦略を用いて難易度を上げ、強化学習で構造的妥当性や推論の複雑さを最適化。実験では、MathSmithが既存のベースラインを上回り、高難易度の合成データがLLMの推論能力を向上させる可能性を示した。 Comment
元ポスト:
#Pocket #NLP #LanguageModel #InstructionTuning #Reasoning Issue Date: 2025-08-02 [Paper Note] CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks, Ping Yu+, arXiv'25 GPT Summary- CoT-Self-Instructを提案し、LLMに基づいて新しい合成プロンプトを生成する手法を開発。合成データはMATH500やAMC23などで既存データセットを超える性能を示し、検証不可能なタスクでも人間や標準プロンプトを上回る結果を得た。 Comment
元ポスト:
より複雑で、Reasoningやplanningを促すようなinstructionが生成される模様。実際に生成されたinstructionのexampleは全体をざっとみた感じこの図中のもののみのように見える。
以下のスクショはMagpieによって合成されたinstruction。InstructionTuning用のデータを合成するならMagpieが便利そうだなぁ、と思っていたのだが、比較するとCoT-SelfInstructの方が、より複雑で具体的な指示を含むinstructionが生成されるように見える。
- [Paper Note] Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing, Zhangchen Xu+, ICLR'25
#Pretraining #Pocket #NLP #Dataset #LanguageModel #Coding #Mathematics #mid-training #COLM Issue Date: 2025-07-10 [Paper Note] MegaMath: Pushing the Limits of Open Math Corpora, Fan Zhou+, COLM'25 GPT Summary- MegaMathは、数学に特化したオープンデータセットで、LLMの数学的推論能力を向上させるために作成された。ウェブデータの再抽出、数学関連コードの特定、合成データの生成を通じて、371Bトークンの高品質なデータを提供し、既存のデータセットを上回る量と品質を実現した。 Comment
元ポスト:
非常に大規模な数学の事前学習/mid-training向けのデータセット
CommonCrawlのHTMLから、さまざまなフィルタリング処理(reformatting, 2 stageのHTML parserの活用(片方はnoisyだが高速、もう一方は高性能だが遅い), fasttextベースの分類器による抽出, deduplication等)を実施しMegaMath-Webを作成、また、MegaMathWebをさらに分類器で低品質なものをフィルタリングし、LLMによってノイズ除去、テキストのreorganizingを実施し(≠ピュアな合成データ)継続事前学習、mid-training向けの高品質なMegaMath-Web-Proを作成。
MegaMathCodeはThe Stack V2 ([Paper Note] StarCoder 2 and The Stack v2: The Next Generation, Anton Lozhkov+, arXiv'24
) をベースにしており、mathematical reasoning, logic puzzles, scientific computationに関するコードを収集。まずこれらのコードと関連が深い11のプログラミング言語を選定し、そのコードスニペットのみを対象とする。次にstrong LLMを用いて、数学に関するrelevanceスコアと、コードの品質を0--6のdiscrete scoreでスコアリングし学習データを作成。作成した学習データでSLMを学習し大規模なフィルタリングを実施することでMegaMath-Codeを作成。
最後にMegaMath-{Web, code}を用いて、Q&A, code data, text&code block dataの3種類を合成。Q&Aデータの合成では、MegaMath-WebからQAペアを抽出し、多様性とデータ量を担保するためQwen2.5-72B-Instruct, Llama3.3-70B-Instructの両方を用いて、QAのsolutionを洗練させる(reasoning stepの改善, あるいはゼロから生成する[^1])ことで生成。また、code dataでは、pythonを対象にMegaMath-Codeのデータに含まれるpython以外のコードを、Qwen2.5-Coder-32B-Instructと、Llamd3.1-70B-Instructによってpythonに翻訳することでデータ量を増やした。text&code blockデータでは、MegaMath-Webのドキュメントを与えて、ブロックを生成(タイトル、数式、結果、コードなど[^1])し、ブロックのverificationを行い(コードが正しく実行できるか、実行結果とanswerが一致するか等)、verifiedなブロックを残すことで生成。
[^1]: この辺は論文の記述を咀嚼して記述しており実サンプルを見ていないので少し正しい認識か不安
#Pocket #NLP #LanguageModel #Alignment #SyntheticDataGeneration #ICLR #Selected Papers/Blogs Issue Date: 2025-06-25 [Paper Note] Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing, Zhangchen Xu+, ICLR'25 GPT Summary- 高品質な指示データはLLMの整合に不可欠であり、Magpieという自己合成手法を提案。Llama-3-Instructを用いて400万の指示と応答を生成し、30万の高品質なインスタンスを選定。Magpieでファインチューニングしたモデルは、従来のデータセットを用いたモデルと同等の性能を示し、特に整合ベンチマークで優れた結果を得た。 Comment
OpenReview: https://openreview.net/forum?id=Pnk7vMbznK
下記のようなpre-queryテンプレートを与え(i.e., userの発話は何も与えず、ユーザの発話を表す特殊トークンのみを渡す)instructionを生成し、post-queryテンプレートを与える(i.e., pre-queryテンプレート+生成されたinstruction+assistantの発話の開始を表す特殊トークンのみを渡す)ことでresponseを生成することで、prompt engineeringやseed無しでinstruction tuningデータを合成できるという手法。
生成した生のinstruction tuning pair dataは、たとえば下記のようなフィルタリングをすることで品質向上が可能で
reward modelと組み合わせてLLMからのresponseを生成しrejection samplingすればDPOのためのpreference dataも作成できるし、single turnの発話まで生成させた後もう一度pre/post-queryをconcatして生成すればMulti turnのデータも生成できる。
他のも例えば、システムプロンプトに自分が生成したい情報を与えることで、特定のドメインに特化したデータ、あるいは特定の言語に特化したデータも合成できる。
#Pretraining #Pocket #NLP #Dataset #LanguageModel #COLM Issue Date: 2025-06-25 [Paper Note] Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models, Thao Nguyen+, COLM'25 GPT Summary- スケーリング法則に基づき、低品質なウェブデータを再利用する手法「REWIRE」を提案。これにより、事前学習データの合成表現を増やし、フィルタリングされたデータのみでのトレーニングと比較して、22のタスクで性能を向上。生データと合成データの混合が効果的であることを示し、ウェブテキストのリサイクルが事前学習データのスケーリングに有効であることを示唆。 Comment
元ポスト:
-
-
学習データの枯渇に対する対処として別の方向性としては下記のような研究もある:
- Scaling Data-Constrained Language Models, Niklas Muennighoff+, NeurIPS'23
data: https://huggingface.co/datasets/facebook/recycling_the_web
#NLP #Dataset #LanguageModel #Reasoning Issue Date: 2025-06-06 [Paper Note] SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond, Junteng Liu+, arXiv'25 GPT Summary- SynLogicは、35の論理的推論タスクを網羅したデータ合成フレームワークで、強化学習(RL)による大規模言語モデル(LLMs)の推論能力向上を目指す。調整可能な難易度で生成されたデータは検証可能で、RLに適している。実験では、SynLogicが最先端の論理的推論性能を達成し、数学やコーディングタスクとの混合によりトレーニング効率が向上することが示された。SynLogicはLLMsの推論能力向上に貴重なリソースとなる。 Comment
元ポスト:
35種類のタスクを人手で選定し、タスクごとに困難度の鍵となるパラメータを定義(数独ならばグリッド数など)。その上で、各タスクごとに人手でルールベースのinstanceを生成するコードを実装し、さまざまな困難度パラメータに基づいて多様なinstanceを生成。生成されたinstanceの困難度は、近似的なUpper Bound(DeepSeek-R1, o3-miniのPass@10)とLower bound(chat model[^1]でのPass@10)を求めデータセットに含まれるinstanceの困難度をコントロールし、taskを記述するpromptも生成。タスクごとに人手で実装されたVerifierも用意されている。
Qwen2.5-7B-BaseをSynDataでDAPOしたところ、大幅にlogic benchmarkとmathematical benchmarkの性能が改善。
mathやcodeのデータとmixして7Bモデルを訓練したところ、32Bモデルに匹敵する性能を達成し、SynDataをmixすることでgainが大きくなったので、SynDataから学習できる能力が汎化することが示唆される。
タスク一覧はこちら
[^1]:どのchat modelかはざっと見た感じわからない。どこかに書いてあるかも。
Logical Reasoningが重要なタスクを扱う際はこのデータを活用することを検討してみても良いかもしれない
#NLP #LanguageModel #PRM #Verification Issue Date: 2025-06-01 [Paper Note] Training Step-Level Reasoning Verifiers with Formal Verification Tools, Ryo Kamoi+, arXiv'25 GPT Summary- 本論文では、プロセス報酬モデル(PRMs)のトレーニングにおける2つの課題、すなわち高コストの人間による注釈と数学的推論問題への限定を解決するために、FoVerというアプローチを提案します。FoVerは形式的検証ツールを用いて自動的に段階レベルのエラーラベルを生成し、人的注釈なしでLLMの応答にエラーラベルを付与したデータセットを合成します。このデータセットでトレーニングされたPRMsは、元のLLMsに基づくベースラインを大幅に上回り、他の最先端モデルとも競争力のある結果を達成しました。 Comment
元ポスト:
人手によるAnnotation(step levelのラベルのアノテーション)無しでProcsee Reward Modelの学習データを構築する手法
Z3やIsabelleなどの形式検証ツールが適用可能なタスクのみに提案手法のスコープは限られる点には注意
人手でアノテーションされたモデルと比較してcomparableなパフォーマンスを達成
スレッド中で評価データが数回のreasoning stepが必要なタスクのみの評価であり、より長く複雑なreasoning step(たとえば [Paper Note] BIG-Bench Extra Hard, Mehran Kazemi+, arXiv'25
)が必要な場合はどうなるか?といった所に興味が寄せられている模様
#ComputerVision #Analysis #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ACL #DPO #PostTraining #Probing Issue Date: 2025-05-18 Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding, Kung-Hsiang Huang+, ACL'25 GPT Summary- Vision Language Models (VLMs)は視覚的算術に苦労しているが、CogAlignという新しいポストトレーニング戦略を提案し、VLMの性能を向上させる。CogAlignは視覚的変換の不変特性を認識するように訓練し、CHOCOLATEで4.6%、MATH-VISIONで2.9%の性能向上を実現し、トレーニングデータを60%削減。これにより、基本的な視覚的算術能力の向上と下流タスクへの転送の効果が示された。 Comment
元ポスト:
既存のLLM (proprietary, openweightそれぞれ)が、シンプルなvisual arithmeticタスク(e.g., 線分の長さ比較, Chart上のdotの理解)などの性能が低いことを明らかにし、
それらの原因を(1)Vision Encoderのrepresentationと(2)Vision EncoderをFreezeした上でのText Decoderのfinetuningで分析した。その結果、(1)ではいくつかのタスクでlinear layerのprobingでは高い性能が達成できないことがわかった。このことから、Vision Encoderによるrepresentationがタスクに関する情報を内包できていないか、タスクに関する情報は内包しているがlinear layerではそれを十分に可能できない可能性が示唆された。
これをさらに分析するために(2)を実施したところ、Vision Encoderをfreezeしていてもfinetuningによりquery stringに関わらず高い性能を獲得できることが示された。このことから、Vision Encoder側のrepresentationの問題ではなく、Text Decoderと側でデコードする際にFinetuningしないとうまく活用できないことが判明した。
手法のところはまだ全然しっかり読めていないのだが、画像に関する特定の属性に関するクエリと回答のペアを合成し、DPOすることで、zero-shotの性能が向上する、という感じっぽい?
#Pocket #NLP #DataGeneration #DataDistillation #ICML Issue Date: 2025-05-07 R.I.P.: Better Models by Survival of the Fittest Prompts, Ping Yu+, ICML'25 GPT Summary- トレーニングデータの品質がモデルの性能に与える影響を考慮し、低品質な入力プロンプトがもたらす問題を解決するために、Rejecting Instruction Preferences(RIP)というデータ整合性評価手法を提案。RIPは、拒否された応答の品質と選択された好みペアとの報酬ギャップを測定し、トレーニングセットのフィルタリングや高品質な合成データセットの作成に利用可能。実験結果では、RIPを用いることでLlama 3.1-8B-Instructでの性能が大幅に向上し、Llama 3.3-70B-Instructではリーダーボードでの順位が上昇した。 Comment
元ポスト:
スレッドで著者が論文の解説をしている。
#Pocket #NLP #Dataset #LanguageModel #Reasoning #Distillation Issue Date: 2025-02-19 NaturalReasoning: Reasoning in the Wild with 2.8M Challenging Questions, Weizhe Yuan+, arXiv'25 GPT Summary- 多様で高品質な推論質問を生成するためのスケーラブルなアプローチを提案し、280万の質問からなるNaturalReasoningデータセットを構築。知識蒸留実験により、強力な教師モデルが推論能力を引き出せることを実証し、教師なし自己学習にも効果的であることを示す。 Comment
元ポスト:
#Pocket #NLP #LanguageModel #ReinforcementLearning #CodeGeneration #SyntheticDataGeneration Issue Date: 2025-02-12 ACECODER: Acing Coder RL via Automated Test-Case Synthesis, Huaye Zeng+, arXiv'25 GPT Summary- 本研究では、コードモデルのトレーニングにおける強化学習(RL)の可能性を探求し、自動化された大規模テストケース合成を活用して信頼できる報酬データを生成する手法を提案します。具体的には、既存のコードデータから質問とテストケースのペアを生成し、これを用いて報酬モデルをトレーニングします。このアプローチにより、Llama-3.1-8B-Insで平均10ポイント、Qwen2.5-Coder-7B-Insで5ポイントの性能向上が見られ、7Bモデルが236B DeepSeek-V2.5と同等の性能を達成しました。また、強化学習を通じてHumanEvalやMBPPなどのデータセットで一貫した改善を示し、特にQwen2.5-Coder-baseからのRLトレーニングがHumanEval-plusで25%以上、MBPP-plusで6%の改善をもたらしました。これにより、コーダーモデルにおける強化学習の大きな可能性が示されました。 #Analysis #Pocket #NLP #LanguageModel #ICLR Issue Date: 2024-04-15 Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws, Zeyuan Allen-Zhu+, N_A, ICLR'25 GPT Summary- 言語モデルのサイズと能力の関係を記述するスケーリング則に焦点を当てた研究。モデルが格納する知識ビット数を推定し、事実知識をタプルで表現。言語モデルは1つのパラメータあたり2ビットの知識を格納可能であり、7Bモデルは14Bビットの知識を格納可能。さらに、トレーニング期間、モデルアーキテクチャ、量子化、疎な制約、データの信号対雑音比が知識格納容量に影響することを示唆。ロータリー埋め込みを使用したGPT-2アーキテクチャは、知識の格納においてLLaMA/Mistralアーキテクチャと競合する可能性があり、トレーニングデータにドメイン名を追加すると知識容量が増加することが示された。 Comment
参考:
openreview: https://openreview.net/forum?id=FxNNiUgtfa
#Pocket #NLP #Dataset #LanguageModel #Evaluation #Reasoning #Mathematics #NeurIPS Issue Date: 2025-08-30 [Paper Note] DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving, Yuxuan Tong+, NeurIPS'24 GPT Summary- 数学問題解決には高度な推論が必要であり、従来のモデルは難しいクエリに対して偏りがあることが明らかになった。そこで、Difficulty-Aware Rejection Tuning(DART)を提案し、難しいクエリに多くの試行を割り当てることでトレーニングを強化。新たに作成した小規模な数学問題データセットで、7Bから70BのモデルをファインチューニングしたDART-MATHは、従来の手法を上回る性能を示した。合成データセットが数学問題解決において効果的でコスト効率の良いリソースであることが確認された。 Comment
#Analysis #NLP #LanguageModel #read-later #Selected Papers/Blogs Issue Date: 2025-05-06 Physics of Language Models: Part 4.1, Architecture Design and the Magic of Canon Layers, Zeyuan Allen-Zhu+, ICML'24 Tutorial Comment
元ポスト:
Canon層の発見
著者による解説:
#Analysis #Pocket #NLP #LanguageModel #ICML #Selected Papers/Blogs Issue Date: 2025-05-03 Physics of Language Models: Part 3.1, Knowledge Storage and Extraction, Zeyuan Allen-Zhu+, ICML'24 GPT Summary- 大規模言語モデル(LLMs)の知識抽出能力は、訓練データの多様性と強く相関しており、十分な強化がなければ知識は記憶されても抽出可能ではないことが示された。具体的には、エンティティ名の隠れ埋め込みに知識がエンコードされているか、他のトークン埋め込みに分散しているかを調査。LLMのプレトレーニングに関する重要な推奨事項として、補助モデルを用いたデータ再構成と指示微調整データの早期取り入れが提案された。 Comment
SNLP'24での解説スライド:
https://speakerdeck.com/sosk/physics-of-language-models-part-3-1-knowledge-storage-and-extraction
#Pocket #NLP #Dataset #LLMAgent #Evaluation #SyntheticDataGeneration Issue Date: 2025-01-03 MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification, Saptarshi Sengupta+, arXiv'24 GPT Summary- MAG-Vというマルチエージェントフレームワークを提案し、顧客クエリを模倣したデータセットを生成してエージェントのパフォーマンスを向上させる。軌跡の検証手法は従来のMLモデルを上回り、GPT-4と同等の性能を示す。多様なタスクエージェントを統一するアプローチを提供。 Comment
元ポスト:
#Survey #Pocket #NLP #LanguageModel Issue Date: 2025-01-02 Generative AI for Synthetic Data Generation: Methods, Challenges and the Future, Xu Guo+, arXiv'24 GPT Summary- 限られたデータのシナリオでLLMsを用いて合成データを生成する研究が増加しており、これは生成的AIの進展を示す。LLMsは実世界のデータと同等の性能を持ち、リソースが限られた課題に対する解決策となる。本論文では、タスク特化型のトレーニングデータ生成のための技術、評価方法、実用的応用、現在の制限、将来の研究の方向性について議論する。 Comment
元ポスト:
#Survey #Pocket #NLP #LanguageModel Issue Date: 2025-01-02 On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey, Lin Long+, arXiv'24 GPT Summary- 深層学習におけるデータの量と質の問題に対し、LLMsが合成データ生成を通じて解決策を提供。しかし、現状の研究は統一されたフレームワークを欠き、表面的なものが多い。本論文では合成データ生成のワークフローを整理し、研究のギャップを明らかにし、今後の展望を示す。学術界と産業界のより体系的な探求を促進することを目指す。 Comment
元ポスト:
#NLP #LanguageModel #OpenWeight #OpenSource Issue Date: 2024-11-06 Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent, Xingwu Sun+, arXiv'24 GPT Summary- Hunyuan-Largeは、3890億パラメータを持つオープンソースのTransformerベースの専門家混合モデルで、最大256Kトークンを処理可能。言語理解や生成、論理推論などのベンチマークでLLama3.1-70Bを上回り、LLama3.1-405Bと同等の性能を示す。主な特徴には大規模な合成データ、混合専門家ルーティング、キー・バリューキャッシュ圧縮、専門家特有の学習率戦略が含まれ、今後のモデル開発に向けた洞察も提供。コードとモデルは公開されている。 Comment
合計パラメータ数はLlama-3.1-405Bと同等の389Bだが、MoEによって52BのActive ParameterでSoTAを達成したTencentのOpenSource LLM。大量のSynthetia Dataを利用している。
#Pretraining #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) #PostTraining Issue Date: 2024-10-21 Self-Taught Evaluators, Tianlu Wang+, N_A, arXiv'24 GPT Summary- 本研究では、人間の注釈なしで評価者を改善するアプローチを提案。合成トレーニングデータを用い、自己改善スキームによりLLMを評価者としてトレーニング。これにより、RewardBenchでのLLMのパフォーマンスを75.4から88.3に向上させ、GPT-4を超える結果を達成。 Comment
LLMのアラインメント等をSFTする際に、preferenceのラベル付きデータが必要になるが、このようなデータを作るのはコストがかかって大変なので自動生成して、より良いreward modelを作りたいよね、という話。
具体的には、LLMを用いて good responseと、instructionを変化させてbad sesponseを生成し、JudgeモデルM_tにpairwiseでどちらが良いかをjudgeさせることで学習データを作成。新たに作成されたデータを用いてJudgeモデルを再学習し、同様のプロセスを繰り返すことで、人手の介在なく強力なJudgeモデルが完成する。
#Pretraining #Pocket #NLP #Supervised-FineTuning (SFT) Issue Date: 2024-09-29 Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling, Hritik Bansal+, N_A, arXiv'24 GPT Summary- 高品質な合成データを生成するために、強力なSEモデルと安価なWCモデルのトレードオフを再検討。WCモデルからのデータはカバレッジと多様性が高いが偽陽性率も高い。ファインチューニングの結果、WC生成データでトレーニングされたモデルがSE生成データのモデルを上回ることが示され、WCが計算最適なアプローチである可能性を示唆。 Comment
元ポスト:
#Pocket #NLP #LanguageModel #QuestionAnswering #SyntheticDataGeneration Issue Date: 2024-09-14 Source2Synth: Synthetic Data Generation and Curation Grounded in Real Data Sources, Alisia Lupidi+, N_A, arXiv'24 GPT Summary- 新手法「Source2Synth」を提案し、LLMに新しいスキルを教える。人間の注釈に依存せず、実世界のソースに基づいた合成データを生成し、低品質な生成物を廃棄してデータセットの質を向上。マルチホップ質問応答と表形式の質問応答に適用し、WikiSQLで25.51%、HotPotQAで22.57%の性能向上を達成。 Comment
合成データ生成に関する研究。
ソースからQAを生成し、2つのsliceに分ける。片方をLLMのfinetuning(LLMSynth)に利用し、もう片方をfinetuningしたLLMで解答可能性に基づいてフィルタリング(curation)する。
最終的にフィルタリングして生成された高品質なデータでLLMをfinetuningする。
Curationされたデータでfinetuningしたモデルの性能は、Curationしていないただの合成データと比べて、MultiHopQA, TableQAベンチマークで高い性能を獲得している。
画像は元ポストより引用
元ポスト:
MultiHopQAの合成データ生成方法
TableQAの合成データ生成方法
#NLP #LanguageModel #Evaluation Issue Date: 2023-05-22 Visualizing Linguistic Diversity of Text Datasets Synthesized by Large Language Models, Emily Reif+, N_A, arXiv'23 GPT Summary- LLMsを使用して生成されたデータセットの構文的多様性を理解し分析するための新しい可視化ツールであるLinguisticLensが提供された。このツールは、テキストを構文、語彙、および意味の軸に沿ってクラスタリングし、階層的な可視化をサポートしている。ライブデモはshorturl.at/zHOUVで利用可能。 Comment
LLMを用いてfew-shot promptingを利用して生成されたデータセットを理解し評価することは難しく、そもそもLLMによって生成されるデータの失敗に関してはあまり理解が進んでいない(e.g. repetitionなどは知られている)。この研究では、LLMによって生成されたデータセットの特性を理解するために、構文・語彙・意味の軸に沿ってクラスタリングすることで、データセットの特性を可視化することで、このような課題を解決することをサポートしている。
特に、従来研究ではGoldが存在することが前提な手法が利用されてきた(e.g. 生成データを利用しdownstream taskの予測性能で良さを測る、Gold distributionとdistributionを比較する)。しかし、このような手法では、synthetic data firstなシチュエーションで、Goldが存在しない場合に対処できない。このような問題を解決するためにGold dataが存在しない場合に、データの構文・語彙・意味に基づくクラスタリングを実施し結果を可視化し、human-in-the-loopの枠組みでデータセットの良さを検証する方法を提案している。
可視化例
実装: https://github.com/PAIR-code/interpretability/tree/master/data-synth-syntax
#Article #Pretraining #NLP #Dataset #LanguageModel #Blog Issue Date: 2025-09-13 Cosmopedia: how to create large-scale synthetic data for pre-training, Allal+(HuggingFace), 2024.03 Comment
cosmopedia dataset: https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
大部分を合成データで学習したPhi-1.5(Textbooks Are All You Need II: phi-1.5 technical report, Yuanzhi Li+, N/A, arXiv'23
)のデータ合成のレシピの詳細は明かされておらず、学習データ自体も公開されていないことを受け、事前学習で利用可能な数百Mサンプルの合成データを生成するレシピはなんなのか?を探った話。
最終的に、30Mのpromptをprompt engineeringをMixtral-8x7B-Instruct-v0.1を通じて作成し、高品質なpretrainingのための広範なトピックの文書群を作成。合成された内容の重複は1%未満。
Phi-1.5の論文の記述に基づくと、20k topicsをseedとし新たなsynthetic dataを作成、web sampleを活用して多様性を担保した、という記述がある。これに基づくと、仮に1ファイルの長さを1000 tokenであると仮定すると、20Mのpromptが活用されたことになる。しかしながら、web sampleを組み合わせる方法と、多様性を増やす方法がクリアではなかった。
Cosmopediaのアプローチとしては、2つのアプローチがある。まず curated educational sources (Khan Academy, OpenStax, WikiHow, Stanford courses)を利用する方法で、これらの全てのユニットを合計しても260k程度であった。これでは到底20Mには届かないため、生成する文書の `style` と `audience` に幅を持たせることで、promptの数を増やした。
具体的には、styleとして、academic textbook / blog post / wikihow articles の3種類、audienceとして young children / high school students / college students / researchers の4種類を用意した。このとき、単にprompt中で特定のaudience/styleで記述するよう指示をしても、同じような内容しか出力されない課題があったため、prompt engineeringによって、より具体的な指示を加えることで解決(Figure3)。
続いてのアプローチはweb dataを活用するアプローチで、収集されたweb samplesを145のクラスタに分類し、各クラスタごとに10個のランダムなサンプルを抽出し、Mixtralにサンプルから共通のトピックを抽出させることでクラスタのトピックを得る。
その後不適切なトピックは除外(e.g., アダルトコンテンツ, ゴシップ等)。その後、クラスタのweb sampleとトピックの双方をpromptに与えて関連するtextbookを生成させるpromptを作成 (Figure 4)。このとき、トピックラベルの生成がうまくいっていない可能性も考慮し、トピックをgivenにしないpromptも用意した。最終的にこれにより23Mのpromptを得た。また、scientificな内容を増やすために、AutoMathText (数学に関して収集されたデータセット)も加えた。
上記promptで合成したデータでモデルを学習したところ、モデルにcommon senseやgrade school educationにおける典型的な知識が欠けていることが判明したため、UltraChatやOpenHermes2.5から日常に関するストーリーを抽出してseed dataに加えた。
下記が最終的なseed-data/format/audienceの分布となる。seed-dataの大部分はweb-dataであることがわかる。
<img width="866" height="513" alt="Image" src="
<a href="https://github.com/user-attachments/assets/f30beb80-e75c-466c-9c77-8080298869cc"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/f30beb80-e75c-466c-9c77-8080298869cc"</a>
/>
最終的に合成データのうち、10-gram overlapに基づいて、contaminationの疑いがある合成データを抽出。ベンチマークデータのうち、50%のsub-stringとマッチした文書は除外することでdecontaminationを実施。
下表がdecontaminationの結果で、()内の数字がユニーク数。decontaminationをしなければこれらが学習データに混入し、ベンチマーキング性能に下駄をはかせることになってしまっていたことになる。
<img width="627" height="228" alt="Image" src="
<a href="https://github.com/user-attachments/assets/5ede5660-7305-41ad-bc56-1be03aec99f2"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/5ede5660-7305-41ad-bc56-1be03aec99f2"</a>
/>
1Bモデルを訓練した結果、半分程度のベンチマークでTinyLlama 1.1Bよりも高いスコアを達成。Qwen-1.5-1BやPhi-1.5に対しては全体としてスコアでは負けているように見える。このことより、より高品質な合成データ生成方法があることが示唆される。
<img width="551" height="384" alt="Image" src="
<a href="https://github.com/user-attachments/assets/536bfc9e-3093-43ba-b866-31f8e7073740"" target="_blank" rel="noopener noreferrer">https://github.com/user-attachments/assets/536bfc9e-3093-43ba-b866-31f8e7073740"</a>
/>
以後、SmolLM構築の際にCosmopediaのpromptに挿入するサンプルをトピックごとにより適切に選択する(文書を合成するモデルをMixtralから他のモデルに変更してもあまり効果がなかったとのこと)などの改善を実施したCosmopedia v2が構築されている。
#Article #Tutorial #LanguageModel #Slide #ACL #Selected Papers/Blogs Issue Date: 2025-08-06 Synthetic Data in the Era of LLMs, Tutorial at ACL 2025 Comment
元ポスト:
#Article #MachineTranslation #NLP #Dataset #Blog Issue Date: 2025-07-09 PLaMo翻訳による英語ベンチマークの翻訳, PFN, 2025.07 #Article #NLP #LanguageModel #Library Issue Date: 2025-01-25 distilabel, 2023.11 Comment
高品質な合成データをLLMで生成するためのフレームワーク
#Article #NLP #Dataset #InstructionTuning #PostTraining Issue Date: 2024-11-21 SmolLM2, 2024.11 Comment
元ポスト:
Orca-AgenInstruct-1M microsoft/orca-agentinstruct-1M-v1, Microsoft, 2024.11
よりもSmolLMのSFTで各種ベンチで高い性能を獲得