SyntheticDataGeneration
#Pocket
#NLP
#LanguageModel
#ReinforcementLearning
#SyntheticData
#Reasoning
#GRPO
Issue Date: 2025-08-10 [Paper Note] MathSmith: Towards Extremely Hard Mathematical Reasoning by Forging Synthetic Problems with a Reinforced Policy, Shaoxiong Zhan+, arXiv'25 SummaryMathSmithという新しいフレームワークを提案し、LLMの数学的推論を強化するために新しい問題をゼロから合成。既存の問題を修正せず、PlanetMathから概念と説明をランダムにサンプリングし、データの独立性を確保。9つの戦略を用いて難易度を上げ、強化学習で構造的妥当性や推論の複雑さを最適化。実験では、MathSmithが既存のベースラインを上回り、高難易度の合成データがLLMの推論能力を向上させる可能性を示した。 Comment元ポスト:https://x.com/gm8xx8/status/1954253929761411180?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Alignment #SyntheticData #ICLR
Issue Date: 2025-06-25 [Paper Note] Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing, Zhangchen Xu+, ICLR'25 Summary高品質な指示データはLLMの整合に不可欠であり、Magpieという自己合成手法を提案。Llama-3-Instructを用いて400万の指示と応答を生成し、30万の高品質なインスタンスを選定。Magpieでファインチューニングしたモデルは、従来のデータセットを用いたモデルと同等の性能を示し、特に整合ベンチマークで優れた結果を得た。 CommentOpenReview:https://openreview.net/forum?id=Pnk7vMbznK
下記のようなpre-queryテンプレートを与え(i.e., userの発話は何も与えず、ユーザの発話を表す特殊トークンのみを渡す)instructionを生成し、post-queryテンプレートを与える(i.e., pre-queryテンプレート+生成されたinstruction+assistantの発話の開始を表す特殊トークンのみを渡す)ことでresponseを生成することで、prompt engineeringやseed無しでinstruction tuningデータを合成できるという手法。
生成した生のinstruction tuning pair dataは、たとえば下記のようなフィルタリングをすることで品質向上が可能で
reward modelと組み合わせてLLMからのresponseを生成しrejection samplingすればDPOのためのpreference dataも作成できるし、single turnの発話まで生成させた後もう一度pre/post-queryをconcatして生成すればMulti turnのデータも生成できる。
他のも例えば、システムプロンプトに自分が生成したい情報を与えることで、特定のドメインに特化したデータ、あるいは特定の言語に特化したデータも合成できる。
#Pocket
#NLP
#LanguageModel
#ReinforcementLearning
#SyntheticData
#CodeGeneration
Issue Date: 2025-02-12 ACECODER: Acing Coder RL via Automated Test-Case Synthesis, Huaye Zeng+, arXiv'25 Summary本研究では、コードモデルのトレーニングにおける強化学習(RL)の可能性を探求し、自動化された大規模テストケース合成を活用して信頼できる報酬データを生成する手法を提案します。具体的には、既存のコードデータから質問とテストケースのペアを生成し、これを用いて報酬モデルをトレーニングします。このアプローチにより、Llama-3.1-8B-Insで平均10ポイント、Qwen2.5-Coder-7B-Insで5ポイントの性能向上が見られ、7Bモデルが236B DeepSeek-V2.5と同等の性能を達成しました。また、強化学習を通じてHumanEvalやMBPPなどのデータセットで一貫した改善を示し、特にQwen2.5-Coder-baseからのRLトレーニングがHumanEval-plusで25%以上、MBPP-plusで6%の改善をもたらしました。これにより、コーダーモデルにおける強化学習の大きな可能性が示されました。
Issue Date: 2025-08-10 [Paper Note] MathSmith: Towards Extremely Hard Mathematical Reasoning by Forging Synthetic Problems with a Reinforced Policy, Shaoxiong Zhan+, arXiv'25 SummaryMathSmithという新しいフレームワークを提案し、LLMの数学的推論を強化するために新しい問題をゼロから合成。既存の問題を修正せず、PlanetMathから概念と説明をランダムにサンプリングし、データの独立性を確保。9つの戦略を用いて難易度を上げ、強化学習で構造的妥当性や推論の複雑さを最適化。実験では、MathSmithが既存のベースラインを上回り、高難易度の合成データがLLMの推論能力を向上させる可能性を示した。 Comment元ポスト:https://x.com/gm8xx8/status/1954253929761411180?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Alignment #SyntheticData #ICLR
Issue Date: 2025-06-25 [Paper Note] Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing, Zhangchen Xu+, ICLR'25 Summary高品質な指示データはLLMの整合に不可欠であり、Magpieという自己合成手法を提案。Llama-3-Instructを用いて400万の指示と応答を生成し、30万の高品質なインスタンスを選定。Magpieでファインチューニングしたモデルは、従来のデータセットを用いたモデルと同等の性能を示し、特に整合ベンチマークで優れた結果を得た。 CommentOpenReview:https://openreview.net/forum?id=Pnk7vMbznK
下記のようなpre-queryテンプレートを与え(i.e., userの発話は何も与えず、ユーザの発話を表す特殊トークンのみを渡す)instructionを生成し、post-queryテンプレートを与える(i.e., pre-queryテンプレート+生成されたinstruction+assistantの発話の開始を表す特殊トークンのみを渡す)ことでresponseを生成することで、prompt engineeringやseed無しでinstruction tuningデータを合成できるという手法。
生成した生のinstruction tuning pair dataは、たとえば下記のようなフィルタリングをすることで品質向上が可能で
reward modelと組み合わせてLLMからのresponseを生成しrejection samplingすればDPOのためのpreference dataも作成できるし、single turnの発話まで生成させた後もう一度pre/post-queryをconcatして生成すればMulti turnのデータも生成できる。
他のも例えば、システムプロンプトに自分が生成したい情報を与えることで、特定のドメインに特化したデータ、あるいは特定の言語に特化したデータも合成できる。
Issue Date: 2025-02-12 ACECODER: Acing Coder RL via Automated Test-Case Synthesis, Huaye Zeng+, arXiv'25 Summary本研究では、コードモデルのトレーニングにおける強化学習(RL)の可能性を探求し、自動化された大規模テストケース合成を活用して信頼できる報酬データを生成する手法を提案します。具体的には、既存のコードデータから質問とテストケースのペアを生成し、これを用いて報酬モデルをトレーニングします。このアプローチにより、Llama-3.1-8B-Insで平均10ポイント、Qwen2.5-Coder-7B-Insで5ポイントの性能向上が見られ、7Bモデルが236B DeepSeek-V2.5と同等の性能を達成しました。また、強化学習を通じてHumanEvalやMBPPなどのデータセットで一貫した改善を示し、特にQwen2.5-Coder-baseからのRLトレーニングがHumanEval-plusで25%以上、MBPP-plusで6%の改善をもたらしました。これにより、コーダーモデルにおける強化学習の大きな可能性が示されました。
#Pocket
#NLP
#Dataset
#LLMAgent
#SyntheticData
#Evaluation
Issue Date: 2025-01-03
MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification, Saptarshi Sengupta+, arXiv'24
SummaryMAG-Vというマルチエージェントフレームワークを提案し、顧客クエリを模倣したデータセットを生成してエージェントのパフォーマンスを向上させる。軌跡の検証手法は従来のMLモデルを上回り、GPT-4と同等の性能を示す。多様なタスクエージェントを統一するアプローチを提供。
Comment元ポスト:https://x.com/dair_ai/status/1868299921117630528?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q
#Pocket
#NLP
#LanguageModel
#QuestionAnswering
#SyntheticData
Issue Date: 2024-09-14
Source2Synth: Synthetic Data Generation and Curation Grounded in Real Data Sources, Alisia Lupidi+, N_A, arXiv'24
Summary新手法「Source2Synth」を提案し、LLMに新しいスキルを教える。人間の注釈に依存せず、実世界のソースに基づいた合成データを生成し、低品質な生成物を廃棄してデータセットの質を向上。マルチホップ質問応答と表形式の質問応答に適用し、WikiSQLで25.51%、HotPotQAで22.57%の性能向上を達成。
Comment合成データ生成に関する研究。
ソースからQAを生成し、2つのsliceに分ける。片方をLLMのfinetuning(LLMSynth)に利用し、もう片方をfinetuningしたLLMで解答可能性に基づいてフィルタリング(curation)する。
最終的にフィルタリングして生成された高品質なデータでLLMをfinetuningする。
Curationされたデータでfinetuningしたモデルの性能は、Curationしていないただの合成データと比べて、MultiHopQA, TableQAベンチマークで高い性能を獲得している。
画像は元ポストより引用
元ポスト: https://x.com/jaseweston/status/1834402693995024453?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QMultiHopQAの合成データ生成方法
TableQAの合成データ生成方法
ソースからQAを生成し、2つのsliceに分ける。片方をLLMのfinetuning(LLMSynth)に利用し、もう片方をfinetuningしたLLMで解答可能性に基づいてフィルタリング(curation)する。
最終的にフィルタリングして生成された高品質なデータでLLMをfinetuningする。
Curationされたデータでfinetuningしたモデルの性能は、Curationしていないただの合成データと比べて、MultiHopQA, TableQAベンチマークで高い性能を獲得している。
画像は元ポストより引用
元ポスト: https://x.com/jaseweston/status/1834402693995024453?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QMultiHopQAの合成データ生成方法
TableQAの合成データ生成方法