TACL
#Analysis#MachineLearning#NLP#LanguageModel#Prompting#In-ContextLearning
Issue Date: 2023-07-11 Lost in the Middle: How Language Models Use Long Contexts, Nelson F. Liu+, N_A, TACL24 Summary最近の言語モデルは、長い文脈を入力として受け取ることができますが、その長い文脈をどれだけうまく利用しているかについてはまだよくわかっていません。この研究では、マルチドキュメントの質問応答とキー・バリューの検索という2つのタスクにおいて、言語モデルのパフォーマンスを分析しました。その結果、関連情報が入力文脈の始まりや終わりにある場合、パフォーマンスが最も高くなることがわかりましたが、長い文脈の中で関連情報にアクセスする必要がある場合、パフォーマンスが著しく低下します。さらに、入力文脈が長くなるにつれて、明示的に長い文脈を扱うモデルでもパフォーマンスが大幅に低下します。この分析は、言語モデルが入力文脈をどのように利用しているかをより良く理解するためのものであり、将来の長い文脈モデルのための新しい評価プロトコルを提供します。 Comment元ツイートhttps://twitter.com/drjimfan/status/1678460065811136512?s=46&t=5BO_qSlNBSEGSugyUlP5Hw非常に重要な知見がまとめられている1. モデルはコンテキストのはじめと最後の情報をうまく活用でき、真ん中の情報をうまく活 ... #NeuralNetwork#Survey#Efficiency/SpeedUp#NLP
Issue Date: 2023-04-25 Efficient Methods for Natural Language Processing: A Survey, Treviso+, TACL23 Commentパラメータ数でゴリ押すような方法ではなく、"Efficient"に行うための手法をまとめている ![image](https://user-images.githubusercontent.com/12249301/234287218-2d42766f-5c5c-4cf9-859e-c2b0a5dR ... #DocumentSummarization#Tutorial#NLP#Dataset
Issue Date: 2021-10-20 WikiAsp: A Dataset for Multi-domain Aspect-based Summarization, Hayashi+, CMU, TACL21, NLPコロキウム Comment◆Aspect-based summarizationのモチベーション ・same source対して、異なるユーザニーズが存在するので、ニーズに関して要約したい ◆Aspect: あるobjectに対する、attributeのようなものを指定? object: Attention IsQ. R ...
Issue Date: 2023-07-11 Lost in the Middle: How Language Models Use Long Contexts, Nelson F. Liu+, N_A, TACL24 Summary最近の言語モデルは、長い文脈を入力として受け取ることができますが、その長い文脈をどれだけうまく利用しているかについてはまだよくわかっていません。この研究では、マルチドキュメントの質問応答とキー・バリューの検索という2つのタスクにおいて、言語モデルのパフォーマンスを分析しました。その結果、関連情報が入力文脈の始まりや終わりにある場合、パフォーマンスが最も高くなることがわかりましたが、長い文脈の中で関連情報にアクセスする必要がある場合、パフォーマンスが著しく低下します。さらに、入力文脈が長くなるにつれて、明示的に長い文脈を扱うモデルでもパフォーマンスが大幅に低下します。この分析は、言語モデルが入力文脈をどのように利用しているかをより良く理解するためのものであり、将来の長い文脈モデルのための新しい評価プロトコルを提供します。 Comment元ツイートhttps://twitter.com/drjimfan/status/1678460065811136512?s=46&t=5BO_qSlNBSEGSugyUlP5Hw非常に重要な知見がまとめられている1. モデルはコンテキストのはじめと最後の情報をうまく活用でき、真ん中の情報をうまく活 ... #NeuralNetwork#Survey#Efficiency/SpeedUp#NLP
Issue Date: 2023-04-25 Efficient Methods for Natural Language Processing: A Survey, Treviso+, TACL23 Commentパラメータ数でゴリ押すような方法ではなく、"Efficient"に行うための手法をまとめている ![image](https://user-images.githubusercontent.com/12249301/234287218-2d42766f-5c5c-4cf9-859e-c2b0a5dR ... #DocumentSummarization#Tutorial#NLP#Dataset
Issue Date: 2021-10-20 WikiAsp: A Dataset for Multi-domain Aspect-based Summarization, Hayashi+, CMU, TACL21, NLPコロキウム Comment◆Aspect-based summarizationのモチベーション ・same source対して、異なるユーザニーズが存在するので、ニーズに関して要約したい ◆Aspect: あるobjectに対する、attributeのようなものを指定? object: Attention IsQ. R ...