CodeGeneration
#Pocket
#NLP
#LanguageModel
#ReinforcementLearning
#SyntheticData
#SyntheticDataGeneration
Issue Date: 2025-02-12 ACECODER: Acing Coder RL via Automated Test-Case Synthesis, Huaye Zeng+, arXiv'25 Summary本研究では、コードモデルのトレーニングにおける強化学習(RL)の可能性を探求し、自動化された大規模テストケース合成を活用して信頼できる報酬データを生成する手法を提案します。具体的には、既存のコードデータから質問とテストケースのペアを生成し、これを用いて報酬モデルをトレーニングします。このアプローチにより、Llama-3.1-8B-Insで平均10ポイント、Qwen2.5-Coder-7B-Insで5ポイントの性能向上が見られ、7Bモデルが236B DeepSeek-V2.5と同等の性能を達成しました。また、強化学習を通じてHumanEvalやMBPPなどのデータセットで一貫した改善を示し、特にQwen2.5-Coder-baseからのRLトレーニングがHumanEval-plusで25%以上、MBPP-plusで6%の改善をもたらしました。これにより、コーダーモデルにおける強化学習の大きな可能性が示されました。 #NLP #LanguageModel
Issue Date: 2023-05-20 CodeT5+: Open Code Large Language Models for Code Understanding and Generation, Yue Wang+, N_A, arXiv'23 Summary本研究では、コードのためのエンコーダーデコーダーLLMsのファミリーである「CodeT5+」を提案し、様々なダウンストリームコードタスクに柔軟に適合することができるようにしました。また、事前学習オブジェクティブの混合を提案することで、事前学習とファインチューニングの不一致を緩和し、スパンデノイジング、コントラスティブラーニング、テキストコードマッチング、因果LM事前学習タスクを含めました。CodeT5+は、異なる設定で20以上のコード関連ベンチマークで徹底的に評価され、最先端のモデルパフォーマンスを観察しました。特に、instruction-tuned CodeT5+ 16Bは、他のオープンなコードLLMsに対して、HumanEvalコード生成タスクで新しい最先端の結果を達成しました。 Comment様々なコードの理解と生成タスクをサポート
異なる訓練手法によって計算効率改善
20種類のコードベンチマークで、様々な設定「ゼロショット、finetuning, instruction tuning等)を実施した結果、コード補完、math programming, text to code retrievalにおいてSoTA達成 #Pocket #NLP #Dataset #LanguageModel #Evaluation #Admin'sPick
Issue Date: 2025-08-15 [Paper Note] Program Synthesis with Large Language Models, Jacob Austin+, arXiv'21 Summary本論文では、汎用プログラミング言語におけるプログラム合成の限界を大規模言語モデルを用いて評価します。MBPPとMathQA-Pythonの2つのベンチマークで、モデルサイズに対する合成性能のスケールを調査。最も大きなモデルは、少数ショット学習でMBPPの59.6%の問題を解決可能で、ファインチューニングにより約10%の性能向上が見られました。MathQA-Pythonでは、ファインチューニングされたモデルが83.8%の精度を達成。人間のフィードバックを取り入れることでエラー率が半減し、エラー分析を通じてモデルの弱点を明らかにしました。最終的に、プログラム実行結果の予測能力を探るも、最良のモデルでも特定の入力に対する出力予測が困難であることが示されました。 Comment代表的なコード生成のベンチマーク。
MBPPデータセットは、promptで指示されたコードをモデルに生成させ、テストコード(assertion)を通過するか否かで評価する。974サンプル存在し、pythonの基礎を持つクラウドワーカーによって生成。クラウドワーカーにタスクdescriptionとタスクを実施する一つの関数(関数のみで実行可能でprintは不可)、3つのテストケースを記述するよう依頼。タスクdescriptionは追加なclarificationなしでコードが記述できるよう十分な情報を含むよう記述するように指示。ground truthの関数を生成する際に、webを閲覧することを許可した。
MathQA-Pythonは、MathQAに含まれるQAのうち解答が数値のもののみにフィルタリングしたデータセットで、合計で23914サンプル存在する。pythonコードで与えられた数学に関する問題を解くコードを書き、数値が一致するか否かで評価する、といった感じな模様。斜め読みなので少し読み違えているかもしれない。
Issue Date: 2025-02-12 ACECODER: Acing Coder RL via Automated Test-Case Synthesis, Huaye Zeng+, arXiv'25 Summary本研究では、コードモデルのトレーニングにおける強化学習(RL)の可能性を探求し、自動化された大規模テストケース合成を活用して信頼できる報酬データを生成する手法を提案します。具体的には、既存のコードデータから質問とテストケースのペアを生成し、これを用いて報酬モデルをトレーニングします。このアプローチにより、Llama-3.1-8B-Insで平均10ポイント、Qwen2.5-Coder-7B-Insで5ポイントの性能向上が見られ、7Bモデルが236B DeepSeek-V2.5と同等の性能を達成しました。また、強化学習を通じてHumanEvalやMBPPなどのデータセットで一貫した改善を示し、特にQwen2.5-Coder-baseからのRLトレーニングがHumanEval-plusで25%以上、MBPP-plusで6%の改善をもたらしました。これにより、コーダーモデルにおける強化学習の大きな可能性が示されました。 #NLP #LanguageModel
Issue Date: 2023-05-20 CodeT5+: Open Code Large Language Models for Code Understanding and Generation, Yue Wang+, N_A, arXiv'23 Summary本研究では、コードのためのエンコーダーデコーダーLLMsのファミリーである「CodeT5+」を提案し、様々なダウンストリームコードタスクに柔軟に適合することができるようにしました。また、事前学習オブジェクティブの混合を提案することで、事前学習とファインチューニングの不一致を緩和し、スパンデノイジング、コントラスティブラーニング、テキストコードマッチング、因果LM事前学習タスクを含めました。CodeT5+は、異なる設定で20以上のコード関連ベンチマークで徹底的に評価され、最先端のモデルパフォーマンスを観察しました。特に、instruction-tuned CodeT5+ 16Bは、他のオープンなコードLLMsに対して、HumanEvalコード生成タスクで新しい最先端の結果を達成しました。 Comment様々なコードの理解と生成タスクをサポート
異なる訓練手法によって計算効率改善
20種類のコードベンチマークで、様々な設定「ゼロショット、finetuning, instruction tuning等)を実施した結果、コード補完、math programming, text to code retrievalにおいてSoTA達成 #Pocket #NLP #Dataset #LanguageModel #Evaluation #Admin'sPick
Issue Date: 2025-08-15 [Paper Note] Program Synthesis with Large Language Models, Jacob Austin+, arXiv'21 Summary本論文では、汎用プログラミング言語におけるプログラム合成の限界を大規模言語モデルを用いて評価します。MBPPとMathQA-Pythonの2つのベンチマークで、モデルサイズに対する合成性能のスケールを調査。最も大きなモデルは、少数ショット学習でMBPPの59.6%の問題を解決可能で、ファインチューニングにより約10%の性能向上が見られました。MathQA-Pythonでは、ファインチューニングされたモデルが83.8%の精度を達成。人間のフィードバックを取り入れることでエラー率が半減し、エラー分析を通じてモデルの弱点を明らかにしました。最終的に、プログラム実行結果の予測能力を探るも、最良のモデルでも特定の入力に対する出力予測が困難であることが示されました。 Comment代表的なコード生成のベンチマーク。
MBPPデータセットは、promptで指示されたコードをモデルに生成させ、テストコード(assertion)を通過するか否かで評価する。974サンプル存在し、pythonの基礎を持つクラウドワーカーによって生成。クラウドワーカーにタスクdescriptionとタスクを実施する一つの関数(関数のみで実行可能でprintは不可)、3つのテストケースを記述するよう依頼。タスクdescriptionは追加なclarificationなしでコードが記述できるよう十分な情報を含むよう記述するように指示。ground truthの関数を生成する際に、webを閲覧することを許可した。
MathQA-Pythonは、MathQAに含まれるQAのうち解答が数値のもののみにフィルタリングしたデータセットで、合計で23914サンプル存在する。pythonコードで与えられた数学に関する問題を解くコードを書き、数値が一致するか否かで評価する、といった感じな模様。斜め読みなので少し読み違えているかもしれない。
#Pocket
#NLP
#Dataset
#LanguageModel
#Evaluation
#Admin'sPick
Issue Date: 2025-08-15
[Paper Note] Evaluating Large Language Models Trained on Code, Mark Chen+, arXiv'21
SummaryCodexはGitHubのコードでファインチューニングされたGPT言語モデルで、Pythonコード生成能力を評価。新しい評価セットHumanEvalでは、Codexが28.8%の問題を解決し、GPT-3は0%、GPT-Jは11.4%だった。繰り返しサンプリングが難しいプロンプトに対しても効果的な戦略を用い、70.2%の問題を解決。モデルの限界として、長い操作の説明や変数へのバインドに苦労する点が明らかに。最後に、コード生成技術の影響について安全性や経済に関する議論を行う。
CommentHumanEvalデータセット。Killed by LLMによると、GPT4oによりすでに90%程度の性能が達成され飽和している。
164個の人手で記述されたprogrammingの問題で、それぞれはfunction signature, docstring, body, unittestを持つ。unittestは問題当たり約7.7 test存在。handwrittenという点がミソで、コンタミネーションの懸念があるためgithubのような既存ソースからのコピーなどはしていない。pass@k[^1]で評価。
[^1]: k個のサンプルを生成させ、k個のサンプルのうち、サンプルがunittestを一つでも通過する確率。ただ、本研究ではよりバイアスをなくすために、kよりも大きいn個のサンプルを生成し、その中からランダムにk個を選択して確率を推定するようなアプローチを実施している。2.1節を参照のこと。
164個の人手で記述されたprogrammingの問題で、それぞれはfunction signature, docstring, body, unittestを持つ。unittestは問題当たり約7.7 test存在。handwrittenという点がミソで、コンタミネーションの懸念があるためgithubのような既存ソースからのコピーなどはしていない。pass@k[^1]で評価。
[^1]: k個のサンプルを生成させ、k個のサンプルのうち、サンプルがunittestを一つでも通過する確率。ただ、本研究ではよりバイアスをなくすために、kよりも大きいn個のサンプルを生成し、その中からランダムにk個を選択して確率を推定するようなアプローチを実施している。2.1節を参照のこと。