NAACL
#NLP#LanguageModel#Bias#PostTraining#PerplexityCurse
Issue Date: 2025-05-02 Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction, Kuniaki Saito+, NAACL25 Comment元ポスト:https://x.com/losnuevetoros/status/1918332232181207096?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qし、逆質問に対するReasoningを生成する(Backward Reasoning)。その後、Forwa ...
Issue Date: 2025-05-02 Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction, Kuniaki Saito+, NAACL25 Comment元ポスト:https://x.com/losnuevetoros/status/1918332232181207096?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qし、逆質問に対するReasoningを生成する(Backward Reasoning)。その後、Forwa ...
#Pocket#NLP#LanguageModel#LongSequence
Issue Date: 2023-10-09 Effective Long-Context Scaling of Foundation Models, Wenhan Xiong+, N_A, NAACL24 Summary私たちは、長いコンテキストをサポートする一連のLLMsを提案します。これらのモデルは、長いテキストを含むデータセットでトレーニングされ、言語モデリングや他のタスクで評価されます。提案手法は、通常のタスクと長いコンテキストのタスクの両方で改善をもたらします。また、70Bバリアントはgpt-3.5-turbo-16kを上回るパフォーマンスを実現します。さらに、私たちはLlamaの位置エンコーディングや事前学習プロセスの設計選択の影響についても分析しました。結果から、長いコンテキストの継続的な事前学習が効果的であることが示されました。 Comment以下elvis氏のツイートの意訳Metaが32kのcontext windowをサポートする70BのLLaMa2のvariant提案し、gpt-3.5-turboをlong contextが必要なタスクでoutperform。short contextのLLaMa2を継続的に訓練して実現。これ位置エ ... #InformationRetrieval#LearningToRank#PairWise#NLP#LanguageModel#Prompting
Issue Date: 2023-07-11 Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting, Zhen Qin+, N_A, NAACL24 SummaryLLMsを使用してドキュメントをランキングする際に、Pairwise Ranking Prompting(PRP)という新しい技術を提案する。PRPは、LLMsへの負荷を軽減し、最先端のランキングパフォーマンスを達成することができる。具体的には、20Bパラメータを持つFlan-UL2モデルに基づくPRPは、商用のGPT-4に基づく従来の手法を上回る結果を示した。さらに、PRPのバリアントを提案し、効率を改善することができることを示した。PRPは生成とスコアリングのLLM APIの両方をサポートし、入力の順序に対して無感度であることも示された。 Commentopen source LLMにおいてスタンダードなランキングタスクのベンチマークでSoTAを達成できるようなprompting技術を提案従来のランキングのためのpromptingはpoint-wiseとlist wiseしかなかったが、前者は複数のスコアを比較するためにスコアのcalibratio ... #NeuralNetwork#NLP#Chain-of-Thought#Prompting#AutomaticPromptEngineering
Issue Date: 2023-04-25 Enhancing LLM Chain-of-Thought with Iterative Bootstrapping, Sun+, Xiamen University (w_ MSRA et al.), NAACL24 CommentZero shot CoTからスタートし、正しく問題に回答できるようにreasoningを改善するようにpromptをreviseし続けるループを回す。最終的にループした結果を要約し、それらをプールする。テストセットに対しては、プールの中からNshotをサンプルしinferenceを行う。 という新しい技術を提案する。PRPは、LLMsへの負荷を軽減し、最先端のランキングパフォーマンスを達成することができる。具体的には、20Bパラメータを持つFlan-UL2モデルに基づくPRPは、商用のGPT-4に基づく従来の手法を上回る結果を示した。さらに、PRPのバリアントを提案し、効率を改善することができることを示した。PRPは生成とスコアリングのLLM APIの両方をサポートし、入力の順序に対して無感度であることも示された。 Commentopen source LLMにおいてスタンダードなランキングタスクのベンチマークでSoTAを達成できるようなprompting技術を提案従来のランキングのためのpromptingはpoint-wiseとlist wiseしかなかったが、前者は複数のスコアを比較するためにスコアのcalibratio ... #NeuralNetwork#NLP#Chain-of-Thought#Prompting#AutomaticPromptEngineering
Issue Date: 2023-04-25 Enhancing LLM Chain-of-Thought with Iterative Bootstrapping, Sun+, Xiamen University (w_ MSRA et al.), NAACL24 CommentZero shot CoTからスタートし、正しく問題に回答できるようにreasoningを改善するようにpromptをreviseし続けるループを回す。最終的にループした結果を要約し、それらをプールする。テストセットに対しては、プールの中からNshotをサンプルしinferenceを行う。 ![image](https://user-images.githubuse重 ...