NormalizingFlow
#ComputerVision
#EfficiencyImprovement
#Pocket
#Transformer
#read-later
#Compression
Issue Date: 2025-10-28 [Paper Note] FARMER: Flow AutoRegressive Transformer over Pixels, Guangting Zheng+, arXiv'25, 2025.10 GPT Summary- FARMERという新しい生成フレームワークを提案し、正規化フローと自己回帰モデルを統合して高品質な画像合成と尤度推定を実現。潜在シーケンスへの変換や自己教師あり次元削減により、ARモデリングの効率を向上。推論速度を加速する蒸留スキームと画像生成品質を向上させる分類器フリーガイダンスを導入。実験により、FARMERは既存モデルと比較して競争力のある性能を示した。 Comment
#ComputerVision #Pocket #Transformer #TextToImageGeneration #Architecture #ICLR #read-later
Issue Date: 2025-08-17 [Paper Note] JetFormer: An Autoregressive Generative Model of Raw Images and Text, Michael Tschannen+, ICLR'25 GPT Summary- JetFormerは、画像とテキストの共同生成を効率化する自己回帰型デコーダー専用のトランスフォーマーであり、別々にトレーニングされたコンポーネントに依存せず、両モダリティを理解・生成可能。正規化フローモデルを活用し、テキストから画像への生成品質で既存のベースラインと競合しつつ、堅牢な画像理解能力を示す。JetFormerは高忠実度の画像生成と強力な対数尤度境界を実現する初のモデルである。 Comment
#Article #Tutorial #read-later
Issue Date: 2025-07-09 Normalizing Flow入門 第1回 変分推論, Tatsuya Yatagawa, 2021.01 Comment
Issue Date: 2025-10-28 [Paper Note] FARMER: Flow AutoRegressive Transformer over Pixels, Guangting Zheng+, arXiv'25, 2025.10 GPT Summary- FARMERという新しい生成フレームワークを提案し、正規化フローと自己回帰モデルを統合して高品質な画像合成と尤度推定を実現。潜在シーケンスへの変換や自己教師あり次元削減により、ARモデリングの効率を向上。推論速度を加速する蒸留スキームと画像生成品質を向上させる分類器フリーガイダンスを導入。実験により、FARMERは既存モデルと比較して競争力のある性能を示した。 Comment
元ポスト:
ポイント解説:
これは...👀👀👀
#ComputerVision #Pocket #Transformer #TextToImageGeneration #Architecture #ICLR #read-later
Issue Date: 2025-08-17 [Paper Note] JetFormer: An Autoregressive Generative Model of Raw Images and Text, Michael Tschannen+, ICLR'25 GPT Summary- JetFormerは、画像とテキストの共同生成を効率化する自己回帰型デコーダー専用のトランスフォーマーであり、別々にトレーニングされたコンポーネントに依存せず、両モダリティを理解・生成可能。正規化フローモデルを活用し、テキストから画像への生成品質で既存のベースラインと競合しつつ、堅牢な画像理解能力を示す。JetFormerは高忠実度の画像生成と強力な対数尤度境界を実現する初のモデルである。 Comment
openreview: https://openreview.net/forum?id=sgAp2qG86e
画像をnormalizing flowでソフトトークンに変換し、transformerでソフトトークンを予測させるように学習することで、テキストと画像を同じアーキテクチャで学習できるようにしました、みたいな話っぽい?おもしろそう
#Article #Tutorial #read-later
Issue Date: 2025-07-09 Normalizing Flow入門 第1回 変分推論, Tatsuya Yatagawa, 2021.01 Comment
この辺のポストも合わせて理解したい: