<h2 id=On-Policy> On-Policy</h2><div class="visible-content"> #ComputerVision #Pocket #ReinforcementLearning #TextToImageGeneration #FlowMatching


Issue Date: 2025-10-10 [Paper Note] Flow-GRPO: Training Flow Matching Models via Online RL, Jie Liu+, arXiv’25, 2025.05 GPT Summary- Flow-GRPOは、オンライン強化学習をフローマッチングモデルに統合した新しい手法で、ODEをSDEに変換することでRL探索のための統計的サンプリングを実現し、デノイジングステップを削減してサンプリング効率を向上させる。実験結果では、テキストから画像へのタスクで性能が大幅に向上し、GenEvalの精度が63%から95%に、視覚的テキストレンダリングの精度が59%から92%に改善された。また、報酬ハッキングがほとんど発生せず、画像の質や多様性を損なうことなく報酬が増加した。 #Pocket #NLP #LanguageModel #ReinforcementLearning #LLMAgent


Issue Date: 2025-10-09 [Paper Note] In-the-Flow Agentic System Optimization for Effective Planning and Tool Use, Zhuofeng Li+, arXiv’25, 2025.10 GPT Summary- AgentFlowは、4つのモジュール(プランナー、エグゼキューター、バリファイア、ジェネレーター)を調整し、マルチターン環境でプランナーを最適化する強化学習フレームワーク。Flow-GRPOを用いて、長いホライズンのスパースリワード問題に対処し、精度を向上。10のベンチマークで、7BスケールのAgentFlowは、検索、エージェンティック、数学、科学タスクでそれぞれ14.9%、14.0%、14.5%、4.1%の精度向上を達成し、GPT-4oを上回る性能を示した。 Comment<p>元ポスト:

https://agentflow.stanford.edu

</p><p>pj page:

https://agentflow.stanford.edu

</p><p>モデルサイズと推論ターンに対するスケーリング特性

似たような話が以下の研究にもある
- [Paper Note] The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs, Akshit Sinha+, arXiv’25 </p><p>ポイント解説:

Loading…

</p></span>

#Pocket #NLP #LanguageModel #ReinforcementLearning #COLM #GRPO #TextToSQL


Issue Date: 2025-10-08 [Paper Note] Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL, Mohammadreza Pourreza+, COLM’25, 2025.03 GPT Summary- Text-to-SQLタスクにおいて、部分的報酬を用いた強化学習(RL)アプローチを提案。スキーマリンクやAIフィードバックなどの報酬を設計し、LLMsの推論スキルを向上させる。RLトレーニングを受けた14Bパラメータモデルは、他のモデルを上回る精度を達成し、提案手法の有効性を示す。 Comment<p>openreview:

https://openreview.net/forum?id=HbwkIDWQgN#discussion

</p><p>元ポスト:

Loading…

</p></span>

</div>

#Analysis #Pocket #NLP #ReinforcementLearning #CurriculumLearning #Batch #One-Line Notes Issue Date: 2025-10-04 [Paper Note] Prompt Curriculum Learning for Efficient LLM Post-Training, Zhaolin Gao+, arXiv'25, 2025.10 GPT Summary- Prompt Curriculum Learning (PCL)を提案し、中程度の難易度のプロンプトを選択してLLMをポストトレーニングする軽量な強化学習アルゴリズムを紹介。最適なバッチサイズとプロンプト選択の重要性を実験で確認し、PCLは情報豊富なプロンプトに焦点を当てることで高いパフォーマンスを達成。ロールアウトを回避し、MATHおよびDeepScaleRでそれぞれ$12.1\times$および$16.9\times$の速度向上を実現。結果は、推論におけるRLの効率とパフォーマンスのトレードオフを改善する新たな方法論を示す。 Comment

元ポスト:

Loading…

(ざっくり読みなので誤りを多分に含むかもしれないがメモ)勾配のノイズの低減と生成の速度のトレードオフを最適にバランスをとるバッチサイズがあることを示し、RLの学習効率が中間程度(簡単すぎず、難しすぎない)の難易度が良いことを示したのち、Valueモデル(ロールアウトに基づいて更新される模様?)を用いてpromptを選択し[^1]中間程度のpromptを用いてロールアウトをし学習するようなオンポリシーのRLを提案する、みたいな話な模様。

[^1]:既存手法のロールアウトによって求める方法(計算コストが高すぎる)や、事前に決めておいた辞書ベースの手法(現在のポリシーからみた時の難易度が反映されておらず効率が悪い)の双方に比べて、適度にオンポリシーさを残したpromptの選び方となっている



#Pocket #NLP #Search #LanguageModel #ReinforcementLearning #read-later #RLVR #One-Line Notes #ReplayBuffer #TreeSearch Issue Date: 2025-10-04 [Paper Note] DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search, Fang Wu+, arXiv'25, 2025.09 GPT Summary- DeepSearchは、RLVRトレーニングにMonte Carlo Tree Searchを統合し、体系的な探索を可能にするフレームワーク。これにより、限られたロールアウトに依存せず、重要な推論経路を見逃さない。実験では、62.95%の平均精度を達成し、1.5B推論モデルで新たな最先端を確立。戦略的な探索の重要性を示し、RLVR手法の進展に向けた新たな方向性を提供。 Comment

元ポスト:

Loading…

最近はRL時の探索空間を増やす取り組みが増えてきているように感じる。

- Replay BufferがPolicy Gradientで使えない理由, piqcy, 2019.03

にもあるように基本的にオンポリシーRLではリプレイバッファを使えないので何らかの工夫が必要、といった話があるが、この研究ではGRPOを前提としつつリプレイバッファを活用する枠組みとなっているようなので、どのような工夫が行われているのだろうか。勉強したい。

所見と解説:

Loading…


#EfficiencyImprovement #MachineLearning #Pocket #NLP #ReinforcementLearning #NeurIPS #PostTraining Issue Date: 2025-09-27 [Paper Note] Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals, Qinsi Wang+, NeurIPS'25 Spotlight, 2025.06 GPT Summary- 大規模言語モデル(LLMs)の強化学習微調整(RFT)におけるサンプル効率の低下を改善するため、モデル固有の信号「角度集中」を特定。これに基づき、勾配駆動型角度情報ナビゲート強化学習フレームワーク(GAIN-RL)を提案し、トレーニングデータを動的に選択することで効率を向上。実証評価では、GAIN-RLがトレーニング効率を2.5倍以上向上させ、元のデータの半分でより良いパフォーマンスを達成したことが示された。 Comment

元ポスト:

Loading…

ヒューリスティックや特定の難易度に基づくラベルからRLのサンプルをサンプリングするのではなく、モデル自身の現在の学習の状態に基づいて動的に選択し学習効率を向上させるアプローチな模様。



#Analysis #EfficiencyImprovement #MachineLearning #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #SmallModel #NeurIPS #PostTraining Issue Date: 2025-09-19 [Paper Note] BREAD: Branched Rollouts from Expert Anchors Bridge SFT & RL for Reasoning, Xuechen Zhang+, NeurIPS'25 GPT Summary- 小型言語モデル(SLMs)は、トレースが不足している場合に複雑な推論を学ぶのが難しい。本研究では、SFT + RLの限界を調査し、BREADという新しい手法を提案。BREADは、専門家のガイダンスを用いてSFTとRLを統合し、失敗したトレースに対して短いヒントを挿入することで成功を促進。これにより、トレーニングが約3倍速くなり、標準的なGRPOを上回る性能を示す。BREADは、SLMの推論能力を大幅に向上させることが確認された。 Comment

元ポスト:

Loading…


#Pocket #NLP #LanguageModel #ReinforcementLearning #NeurIPS #read-later #RLVR #Verification Issue Date: 2025-09-19 [Paper Note] Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards, Xiaoyuan Liu+, NeurIPS'25 GPT Summary- RISEという新しいオンラインRLフレームワークを提案し、LLMの問題解決能力と自己検証能力を同時に向上させる。結果検証者からの報酬を活用し、解決策生成と自己検証に即時フィードバックを提供。実験により、RISEは問題解決精度を向上させ、自己検証スキルを育成することが示された。RISEは堅牢で自己認識のある推論者を育成するための効果的な手法である。 Comment

元ポスト:

Loading…

Self-Verificationの能力が大幅に向上するのは良さそう。



#MachineLearning #Pocket #NLP #LanguageModel #ReinforcementLearning #DiffusionModel #Inpainting Issue Date: 2025-09-19 [Paper Note] Inpainting-Guided Policy Optimization for Diffusion Large Language Models, Siyan Zhao+, arXiv'25 GPT Summary- dLLMsはインペインティング能力を活用し、強化学習の探索課題を解決するIGPOフレームワークを提案。部分的な真実の推論トレースを挿入し、探索を有望な軌道に導く。これによりサンプル効率が向上し、GSM8K、Math500、AMCの数学ベンチマークで新たな最先端結果を達成。 Comment

元ポスト:

Loading…

部分的にtraceの正解を与えると、正解の方向にバイアスがかかるので多様性が犠牲になる気もするが、その辺はどうなんだろうか。



#EfficiencyImprovement #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #LLMAgent #SyntheticData #Reasoning Issue Date: 2025-09-18 [Paper Note] WebSailor: Navigating Super-human Reasoning for Web Agent, Kuan Li+, arXiv'25 GPT Summary- WebSailorは、LLMのトレーニングにおいて人間の認知的限界を超えるためのポストトレーニング手法であり、複雑な情報探索タスクでの性能を向上させる。構造化サンプリングや情報の難読化、DUPOを用いて高不確実性タスクを生成し、オープンソースエージェントの能力を大幅に上回ることを目指す。 #Pocket #LanguageModel #ReinforcementLearning #GRPO #Robotics #VisionLanguageActionModel #EmbodiedAI Issue Date: 2025-09-12 [Paper Note] SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning, Haozhan Li+, arXiv'25 GPT Summary- VLAモデルの強化学習フレームワークSimpleVLA-RLを提案し、ロボット操作の効率を向上。大規模データへの依存を減らし、一般化能力を強化。OpenVLA-OFTで最先端のパフォーマンスを達成し、RoboTwin 1.0&2.0で優れた結果を示す。新たな現象「pushcut」を特定。 Comment

元ポスト:

Loading…

HF: https://huggingface.co/collections/Haozhan72/simplevla-rl-6833311430cd9df52aeb1f86

ポイント解説:

Loading…

VLAにおいて初めてR1-styleのルールベースのverifiable reward(シミュレーション環境から得られる結果)のみに基づくシンプルなon policy RLを実施することで、SFTを実施する場合よりも高い性能、かつ高い汎化性能を獲得できることをVLAにおいて示した研究な模様。

ただし新たなBehaviorに対するExplorationをより高めるために、Refモデルに対するKL Divergenceペナルティを除外したり、3.3節に記述されているような、
- Dynamic Sampling: 全てのロールアウトのRewardが同じ値になるとGRPOのadvantageが0となり勾配が消失する問題があるので、全てのロールアウトが成功/失敗したグループは除外(言い換えると、mixed outcomeのグループのみを利用)して学習
- Clip Higher: DAPOと同様に、直前のポリシーと現在のポリシーの比率のクリッピングの上限値を広げ(つまり、低い確率だったものをより大きな値となることを以前よりも許容する)て探索を促す
- Higher Rollout Temperature:ロールアウト時のtemperatureを1.6と高めにし、より多様なtrajectoryが生成されるようにすることで探索を促す

といった全体的に探索を強めるような調整を行なっている模様。



#Analysis #Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #Catastrophic Forgetting Issue Date: 2025-09-06 [Paper Note] RL's Razor: Why Online Reinforcement Learning Forgets Less, Idan Shenfeld+, arXiv'25 GPT Summary- 強化学習(RL)と教師ありファインチューニング(SFT)の比較により、RLが以前の知識をより良く保持することが明らかに。忘却の程度は分布のシフトによって決まり、KLダイバージェンスで測定される。RLは新しいタスクに対してKL最小解にバイアスがかかる一方、SFTは任意の距離に収束する可能性がある。実験を通じて、RLの更新が小さなKL変化をもたらす理由を理論的に説明し、「RLの剃刀」と呼ぶ原則を提唱。 Comment

元ポスト:

Loading…

所見:

Loading…

ポイント解説:

Loading…


#Pocket #NLP #LanguageModel #ReinforcementLearning #Diversity Issue Date: 2025-09-03 [Paper Note] Jointly Reinforcing Diversity and Quality in Language Model Generations, Tianjian Li+, arXiv'25 GPT Summary- DARLINGというフレームワークを提案し、応答の質と意味的多様性を最適化。学習された分割関数を用いて多様性を測定し、質の報酬と組み合わせることで高品質かつ独自性のある出力を生成。実験により、非検証可能なタスクと検証可能なタスクの両方で優れた結果を示し、特に多様性の最適化が探索を促進し、質の向上に寄与することが確認された。 Comment

元ポスト:

Loading…

関連:

Loading…


#Pocket #NLP #LanguageModel #ReinforcementLearning #LLMAgent #SmallModel #ComputerUse Issue Date: 2025-08-29 [Paper Note] Mobile-Agent-v3: Foundamental Agents for GUI Automation, Jiabo Ye+, arXiv'25 GPT Summary- 本論文では、GUI-OwlというGUIエージェントモデルを提案し、デスクトップおよびモバイル環境での最先端性能を達成したことを報告しています。特に、Mobile-Agent-v3フレームワークを導入し、性能を向上させました。GUI-Owlは、クラウドベースの仮想環境を利用した自己進化するデータ生成、エンドツーエンドの意思決定を支援する多様な機能、スケーラブルな強化学習フレームワークを特徴としています。これらの成果は、オープンソースとして公開されています。 Comment

github: https://github.com/X-PLUG/MobileAgent?tab=readme-ov-file

元ポスト:

Loading…

ベンチマーク:
- AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents, Christopher Rawles+, ICLR'25
- [Paper Note] OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments, Tianbao Xie+, arXiv'24

Trajectory-aware Relative Policy Optimization
(TRPO)



#Pocket #NLP #LanguageModel #ReinforcementLearning #GRPO #Stability Issue Date: 2025-08-14 [Paper Note] Geometric-Mean Policy Optimization, Yuzhong Zhao+, arXiv'25 GPT Summary- GRPOの不安定性を解決するために、幾何平均を最適化するGMPOを提案。GMPOは外れ値に敏感でなく、安定した重要度サンプリング比率を維持。実験により、GMPO-7Bは複数の数学的およびマルチモーダル推論ベンチマークでGRPOを上回る性能を示した。 Comment

元ポスト:

Loading…

ポイント解説:

Loading…


#Pocket #NLP #LanguageModel #ReinforcementLearning #Reasoning #Overthinking Issue Date: 2025-08-14 [Paper Note] Sample More to Think Less: Group Filtered Policy Optimization for Concise Reasoning, Vaishnavi Shrivastava+, arXiv'25 GPT Summary- GFPO(Group Filtered Policy Optimization)を提案し、応答の長さの膨張を抑制。応答を長さとトークン効率に基づいてフィルタリングし、推論時の計算量を削減。Phi-4モデルで長さの膨張を46-71%削減し、精度を維持。Adaptive Difficulty GFPOにより、難易度に応じた訓練リソースの動的割り当てを実現。効率的な推論のための効果的なトレードオフを提供。 Comment

元ポスト:

Loading…

ポイント解説:

Loading…

著者ポスト:

Loading…


#ComputerVision #Pocket #Transformer #ReinforcementLearning #TextToImageGeneration #GRPO #Encoder-Decoder Issue Date: 2025-08-12 [Paper Note] AR-GRPO: Training Autoregressive Image Generation Models via Reinforcement Learning, Shihao Yuan+, arXiv'25 GPT Summary- AR-GRPOは、自己回帰画像生成モデルにオンライン強化学習を統合した新しいアプローチで、生成画像の品質を向上させるためにGRPOアルゴリズムを適用。クラス条件およびテキスト条件の画像生成タスクで実験を行い、標準のARモデルと比較して品質と人間の好みを大幅に改善した。結果は、AR画像生成における強化学習の有効性を示し、高品質な画像合成の新たな可能性を開く。 Comment

元ポスト:

Loading…

関連:
- [Paper Note] JetFormer: An Autoregressive Generative Model of Raw Images and Text, Michael Tschannen+, ICLR'25



#Pocket #NLP #LanguageModel #ReinforcementLearning #Factuality #RewardHacking #PostTraining #GRPO Issue Date: 2025-08-08 [Paper Note] Learning to Reason for Factuality, Xilun Chen+, arXiv'25 GPT Summary- R-LLMsは複雑な推論タスクで進展しているが、事実性において幻覚を多く生成する。オンラインRLを長文の事実性設定に適用する際、信頼できる検証方法が不足しているため課題がある。従来の自動評価フレームワークを用いたオフラインRLでは報酬ハッキングが発生することが判明。そこで、事実の精度、詳細レベル、関連性を考慮した新しい報酬関数を提案し、オンラインRLを適用。評価の結果、幻覚率を平均23.1ポイント削減し、回答の詳細レベルを23%向上させた。 Comment

元ポスト:

Loading…

先行研究:
- [Paper Note] VERISCORE: Evaluating the factuality of verifiable claims in long-form text generation, Yixiao Song+, arXiv'24

Reasoning ModelのHallucination Rateは、そのベースとなるモデルよりも高い。実際、DeepSeek-V3とDeepSeek-R1,Qwen-2.5-32BとQwQ-32Bを6つのFactualityに関するベンチマークで比較すると、Reasoning Modelの方がHallucination Rateが10, 13%程度高かった。これは、現在のOn-policyのRLがlogical reasoningにフォーカスしており、Factualityを見落としているため、と仮説を立てている。
Factuality(特にLongForm)とRL alignmentsという観点から言うと、決定的、正確かつ信頼性のあるverificatlon手法は存在せず、Human Effortが必要不可欠である。
自動的にFactualityを測定するFactScoreのような手法は、DPOのようなオフラインのペアワイズのデータを作成するに留まってしまっている。また、on dataでFactualityを改善する取り組みは行われているが、long-formな応答に対して、factual reasoningを実施するにはいくつかの課題が残されている:
- reward design
- Factualityに関するrewardを単独で追加するだけだと、LLMは非常に短く、詳細を省略した応答をしPrecicionのみを高めようとしてしまう。

あとで追記する



#EfficiencyImprovement #Pocket #NLP #LanguageModel #ReinforcementLearning #CrossDomain Issue Date: 2025-08-03 [Paper Note] SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM, Xiaojiang Zhang+, arXiv'25 GPT Summary- 二段階履歴再サンプリングポリシー最適化(SRPO)を提案し、DeepSeek-R1-Zero-32Bを上回る性能をAIME24およびLiveCodeBenchで達成。SRPOはトレーニングステップを約1/10に削減し、効率性を示す。二つの革新として、クロスドメイントレーニングパラダイムと履歴再サンプリング技術を導入し、LLMの推論能力を拡張するための実験を行った。 Comment

元ポスト:

Loading…

GRPOよりもより効率的な手法な模様。最初に数学のデータで学習をしReasoning Capabilityを身につけさせ、その後別のドメインのデータで学習させることで、その能力を発揮させるような二段階の手法らしい。

Datamixingよりも高い性能(ただし、これは数学とコーディングのCoT Lengthのドメイン間の違いに起因してこのような2 stageな手法にしているようなのでその点には注意が必要そう)?しっかりと読めていないので、読み違いの可能性もあるので注意。
image

なんたらRPO多すぎ問題



#EfficiencyImprovement #Pocket #NLP #LanguageModel #ReinforcementLearning #MoE(Mixture-of-Experts) #Stability Issue Date: 2025-07-26 [Paper Note] Group Sequence Policy Optimization, Chujie Zheng+, arXiv'25 GPT Summary- Group Sequence Policy Optimization (GSPO)は、大規模言語モデルのための新しい強化学習アルゴリズムで、シーケンスの尤度に基づく重要度比を用いてトレーニングを行う。GSPOは、従来のGRPOアルゴリズムよりも効率的で高性能であり、Mixture-of-Experts (MoE) のトレーニングを安定化させる。これにより、最新のQwen3モデルにおいて顕著な改善が見られる。 Comment

元ポスト:

Loading…

公式ポスト:

Loading…

GRPOとGSPOの違いのGIF:

Loading…


#ComputerVision #Pocket #NLP #ReinforcementLearning #MultiModal #Reasoning #VisionLanguageModel Issue Date: 2025-07-12 [Paper Note] Perception-Aware Policy Optimization for Multimodal Reasoning, Zhenhailong Wang+, arXiv'25 GPT Summary- 強化学習における検証可能な報酬(RLVR)は、LLMsに多段階推論能力を与えるが、マルチモーダル推論では最適な性能を発揮できない。視覚入力の認識が主なエラー原因であるため、知覚を意識したポリシー最適化(PAPO)を提案。PAPOはGRPOの拡張で、内部監視信号から学習し、追加のデータや外部報酬に依存しない。KLダイバージェンス項を導入し、マルチモーダルベンチマークで4.4%の改善、視覚依存タスクでは8.0%の改善を達成。知覚エラーも30.5%減少し、PAPOの効果を示す。研究は視覚に基づく推論を促進する新しいRLフレームワークの基盤を築く。 Comment

元ポスト:

Loading…

VLMにおいて、画像をマスクした場合のポリシーモデルの出力と、画像をマスクしない場合のポリシーモデルの出力のKL Divergenceを最大化することで、画像の認知能力が向上し性能向上するよ、みたいな話な模様。
image

image

image



#Analysis #Pocket #NLP #LanguageModel #ReinforcementLearning #TransferLearning #DPO #GRPO #VerifiableRewards #Off-Policy #Non-VerifiableRewards Issue Date: 2025-06-30 [Paper Note] Bridging Offline and Online Reinforcement Learning for LLMs, Jack Lanchantin+, arXiv'25 GPT Summary- 大規模言語モデルのファインチューニングにおける強化学習手法の効果を、オフラインからオンラインへの移行において調査。数学タスクと指示に従うタスクのベンチマーク評価を行い、オンラインおよびセミオンラインの最適化手法がオフライン手法を上回る結果を示す。トレーニングダイナミクスとハイパーパラメータ選択について分析し、検証可能な報酬と検証不可能な報酬を共同で扱うことでパフォーマンス向上を確認。 Comment

元ポスト:

Loading…


#Analysis #Pocket #NLP #LanguageModel #Alignment #ReinforcementLearning #PPO (ProximalPolicyOptimization) #ICML #DPO Issue Date: 2025-06-25 [Paper Note] Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data, Fahim Tajwar+, ICML'24 GPT Summary- 好みのラベルを用いた大規模言語モデルのファインチューニングに関する研究。オンポリシー強化学習や対照学習などの手法を比較し、オンポリシーサンプリングや負の勾配を用いるアプローチが優れていることを発見。これにより、カテゴリ分布の特定のビンにおける確率質量を迅速に変更できるモード探索目的の重要性を示し、データ収集の最適化に関する洞察を提供。 Comment

以下のオフライン vs. オンラインRLアルゴリズムで本研究が引用されている:

Loading…


#Article #Library #ReinforcementLearning #Blog #Selected Papers/Blogs #Off-Policy Issue Date: 2025-08-26 Your Efficient RL Framework Secretly Brings You Off-Policy RL Training, Yao+, 2025.08 Comment

元ポスト:

Loading…

元々
- verl: Volcano Engine Reinforcement Learning for LLMs, ByteDance Seed Team, 2025.04

のスレッド中にメモっていたが、アップデートがあったようなので新たにIssue化

アップデートがあった模様:

Loading…


- Parallelismのミスマッチでロールアウトと学習のギャップを広げてしまうこと(特にsequence parallelism)
- Longer Sequenceの方が、ギャップが広がりやすいこと
- Rolloutのためのinferenceエンジンを修正する(SGLang w/ deterministic settingすることも含む)だけでは効果は限定的

といった感じな模様。


#Article #NLP #ReinforcementLearning #python #Repository #GRPO #MinimalCode Issue Date: 2025-08-19 reasoning-minimal, torotoki, 2025.08 Comment

TRLのGRPOTrainer、および独自定義のReward(フォーマット/acc)を用いたミニマルなGRPOの実装。GRPOを実施する際には参照のこと。



#Article #Tutorial #ReinforcementLearning #Blog #Off-Policy Issue Date: 2025-06-19 Q-learning is not yet scalable, Seohong Park, UC Berkeley, 2025.06 Comment

元ポスト:

Loading…

on-policy RLでは、現在の状態からポリシーに従ってアクションを選択して、実際に選択したアクションのrewardとQ値をシグナルにしてポリシーを更新するけど、off-policy RLでは、未来において現在の(Q関数で)Q値が最大となるアクションを選択した場合に得られる価値はどんなもん?というQ関数の学習が甘い状態だととあるアクションを過大評価してしまう(=バイアス)ようなシグナルに基づいて更新されるから、系列が長くなるとバイアスが蓄積して適切なQ関数が学習できなくなってdepth方向にスケールしづらいんだよ、という話っぽい?