ContrastiveReinforcementLearning
[Paper Note] 1000 Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Capabilities, Wang+, NeurIPS'25 Best Paper Awards
Paper/Blog Link My Issue
#NeuralNetwork #ComputerVision #MachineLearning #ReinforcementLearning #Self-SupervisedLearning #NeurIPS #read-later #Selected Papers/Blogs #Robotics #Locomotion #Manipulation #EmergentAbilities #Depth Issue Date: 2025-12-01 GPT Summary- 自己教師ありRLのスケーラビリティを改善するため、ネットワークの深さを1024層に増加させることで性能向上を実証。無監督の目標条件設定でエージェントが探索し、目標達成を学ぶ実験を行い、自己教師ありコントラストRLアルゴリズムの性能を向上させた。深さの増加は成功率を高め、行動の質的変化ももたらす。 Comment
元ポスト: