SoftPrompt
[Paper Note] Tailor: A Prompt-Based Approach to Attribute-Based Controlled Text Generation, Kexin Yang+, ACL'23, 2022.04
Paper/Blog Link My Issue
#NaturalLanguageGeneration #Controllable #Pocket #NLP #PEFT(Adaptor/LoRA) #ACL #KeyPoint Notes Issue Date: 2023-07-15 GPT Summary- 属性に基づくCTGでは、プロンプトを使用して望ましい属性を満たす文を生成。新手法Tailorは、各属性を連続ベクトルとして表し、固定PLMの生成を誘導。実験によりマルチ属性生成が実現できるが、流暢さの低下が課題。マルチ属性プロンプトマスクと再インデックス位置ID列でこのギャップを埋め、学習可能なプロンプトコネクタにより属性間の連結も可能に。11の生成タスクで強力な性能を示し、GPT-2の最小限のパラメータで有効性を確認。 Comment
Soft Promptを用いてattributeを連続値ベクトルで表現しconcatすることで生成をコントロールする。このとき、複数attuributeを指定可能である。
工夫点としては、attention maskにおいて
soft prompt同士がattendしないようにし、交互作用はMAP Connectorと呼ばれる交互作用そのものを学習するコネクタに移譲する点、(複数のsoft promptをconcatすることによる)Soft Promptのpositionのsensitivityを低減するために、末尾のsoft prompt以外はreindexしている点のようである。