Toxicity
#Pretraining
#Pocket
#NLP
#LanguageModel
#Supervised-FineTuning (SFT)
#Safety
#DPO
#ActivationSteering/ITI
Issue Date: 2025-05-09 When Bad Data Leads to Good Models, Kenneth Li+, arXiv'25 Summary本論文では、LLMの事前学習におけるデータの質の再検討を行い、有害データが事後学習における制御を向上させる可能性を探ります。トイ実験を通じて、有害データの割合が増加することで有害性の概念が線形表現に影響を与えることを発見し、有害データが生成的有害性を増加させつつも除去しやすくなることを示しました。評価結果は、有害データで訓練されたモデルが生成的有害性を低下させつつ一般的な能力を保持する良好なトレードオフを達成することを示唆しています。 Comment元ポスト:https://x.com/ke_li_2021/status/1920646069613957606?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qこれは面白そうWebコーパスなどを事前学習で利用する際は、質の高いデータを残して学習した方が良いとされているが、4chanのようなtoxicなデータを混ぜて事前学習して、後からdetox(Inference Time Intervention 1941 , SFT, DPO)することで、最終的なモデルのtoxicなoutputが減るという話らしい。これはそもそも事前学習時点でtoxicなデータのsignalが除外されることで、モデルがtoxicな内容のrepresentationを学習できず、最終的にtoxicか否かをコントロールできなくなるため、と考察している(っぽい)
有害な出力を減らせそうなことは分かったが、Activation Steeringによってどの程度モデルの性能に影響を与えるのかが気になる、と思ったがAppendixに記載があった。細かく書かれていないので推測を含むが、各データに対してToxicデータセットでProbingすることでTopKのheadを決めて、Kの値を調整することでinterventionの強さを調整し、Toxicデータの割合を変化させて評価してみたところ、モデルの性能に大きな影響はなかったということだと思われる(ただし1Bモデルでの実験しかない)
おそらく2,3節あたりが一番おもしろいポイントなのだと思われるがまだ読めていない。
Issue Date: 2025-05-09 When Bad Data Leads to Good Models, Kenneth Li+, arXiv'25 Summary本論文では、LLMの事前学習におけるデータの質の再検討を行い、有害データが事後学習における制御を向上させる可能性を探ります。トイ実験を通じて、有害データの割合が増加することで有害性の概念が線形表現に影響を与えることを発見し、有害データが生成的有害性を増加させつつも除去しやすくなることを示しました。評価結果は、有害データで訓練されたモデルが生成的有害性を低下させつつ一般的な能力を保持する良好なトレードオフを達成することを示唆しています。 Comment元ポスト:https://x.com/ke_li_2021/status/1920646069613957606?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Qこれは面白そうWebコーパスなどを事前学習で利用する際は、質の高いデータを残して学習した方が良いとされているが、4chanのようなtoxicなデータを混ぜて事前学習して、後からdetox(Inference Time Intervention 1941 , SFT, DPO)することで、最終的なモデルのtoxicなoutputが減るという話らしい。これはそもそも事前学習時点でtoxicなデータのsignalが除外されることで、モデルがtoxicな内容のrepresentationを学習できず、最終的にtoxicか否かをコントロールできなくなるため、と考察している(っぽい)
おそらく2,3節あたりが一番おもしろいポイントなのだと思われるがまだ読めていない。