GenerativeAdversarialNetwork
#Pocket
#NLP
#LanguageModel
#PEFT(Adaptor/LoRA)
#Catastrophic Forgetting
#PostTraining
#read-later
Issue Date: 2025-10-06 [Paper Note] Self-Evolving LLMs via Continual Instruction Tuning, Jiazheng Kang+, arXiv'25, 2025.09 GPT Summary- MoE-CLは、産業環境における大規模言語モデルの継続学習を支援するためのフレームワークで、タスクごとのLoRA専門家と共有LoRA専門家を用いて知識の保持とクロスタスクの一般化を実現。敵対的学習により、タスクに関連する情報のみを通過させる識別器を統合し、自己進化を促進。実験結果では、Tencent Videoプラットフォームでの手動レビューコストを15.3%削減し、実用性が示された。 Comment
#NeuralNetwork #Pocket #NLP #NeurIPS
Issue Date: 2018-02-04 [Paper Note] Adversarial Ranking for Language Generation, Lin+, NIPS'17 #NeuralNetwork #Tutorial #ComputerVision #Pocket
Issue Date: 2017-12-28 [Paper Note] Generative Adversarial Networks: An Overview, Antonia Creswell+, IEEE-SPM'17, 2017.10 GPT Summary- GANは、注釈なしのデータで深い表現を学習する手法で、競争プロセスを通じて逆伝播信号を導出します。画像合成やスタイル転送など多様な応用が可能です。本レビューは、信号処理コミュニティ向けにGANの概要を提供し、トレーニング方法や残された課題についても言及します。
Issue Date: 2025-10-06 [Paper Note] Self-Evolving LLMs via Continual Instruction Tuning, Jiazheng Kang+, arXiv'25, 2025.09 GPT Summary- MoE-CLは、産業環境における大規模言語モデルの継続学習を支援するためのフレームワークで、タスクごとのLoRA専門家と共有LoRA専門家を用いて知識の保持とクロスタスクの一般化を実現。敵対的学習により、タスクに関連する情報のみを通過させる識別器を統合し、自己進化を促進。実験結果では、Tencent Videoプラットフォームでの手動レビューコストを15.3%削減し、実用性が示された。 Comment
元ポスト:
continual instruction tuning... そしてGAN!?
タスク固有の知識を備えたLoRAと、タスク間で共有されるLoRAがクロスタスクの転移を促し、それぞれをMoEにおけるexpertsとして扱うことで、inputに対して動的に必要なLoRA expertsを選択する。このとき、Task Classifier(Adversarialに訓練する)でタスクに関係ない情報が順伝搬されないようにフィルタリングするっぽい?(GANをText Classifierの学習に使い、Classifierの情報を用いることで共有/タスク固有のLoRA expertsが学習されるように促すようだが、細かくどうやるかは読まないとわからない)。
ドメイン固有のタスクとデータに対して、さまざまなアダプターを追加していき、catastrophic forgettingを防ぎながら、扱えるタスクの幅が広がっていく枠組み自体は面白そう(学習は果たして安定するのだろうか)。
#NeuralNetwork #Pocket #NLP #NeurIPS
Issue Date: 2018-02-04 [Paper Note] Adversarial Ranking for Language Generation, Lin+, NIPS'17 #NeuralNetwork #Tutorial #ComputerVision #Pocket
Issue Date: 2017-12-28 [Paper Note] Generative Adversarial Networks: An Overview, Antonia Creswell+, IEEE-SPM'17, 2017.10 GPT Summary- GANは、注釈なしのデータで深い表現を学習する手法で、競争プロセスを通じて逆伝播信号を導出します。画像合成やスタイル転送など多様な応用が可能です。本レビューは、信号処理コミュニティ向けにGANの概要を提供し、トレーニング方法や残された課題についても言及します。
#NeuralNetwork
#Tutorial
#NeurIPS
Issue Date: 2018-02-06
Generative Adversarial Networks (GANS), NIPS'16
Comment
Goodfellow氏によるGANチュートリアル