DocParser


Paper/Blog Link My Issue
#Pocket #Dataset #Evaluation #CVPR #OCR Issue Date: 2025-10-21 GPT Summary- 文書内容抽出のための新しいベンチマーク「OmniDocBench」を提案。これは、9つの文書ソースにわたる高品質な注釈を特徴とし、エンドツーエンド評価やタスク特化型分析をサポート。異なる文書タイプにおける手法の強みと弱みを明らかにし、文書解析の公平で詳細な評価基準を設定。データセットとコードは公開されている。

Paper/Blog Link My Issue
#Document #Pocket #NLP #Library #ACL Issue Date: 2025-06-21 GPT Summary- 文書画像解析の新モデル「Dolphin」を提案。レイアウト要素をシーケンス化し、タスク特有のプロンプトと組み合わせて解析を行う。3000万以上のサンプルで訓練し、ページレベルと要素レベルの両方で最先端の性能を達成。効率的なアーキテクチャを実現。コードは公開中。 Comment

repo: https://github.com/bytedance/Dolphin

SoTAなDocumentのparser
image

ドキュメントに記述が見当たらないように見えたが、おそらくHFに付与されているタグを見る限り、英語と中国語をサポートしていると思われる




Paper/Blog Link My Issue
#Article #ComputerVision #NLP #Supervised-FineTuning (SFT) #ReinforcementLearning #MultiLingual #Japanese #GRPO #Selected Papers/Blogs #VisionLanguageModel #OCR #One-Line Notes Issue Date: 2025-10-23 Comment

元ポスト:

Loading…

モデル: https://huggingface.co/allenai/olmOCR-2-7B-1025-FP8

Apache2.0ライセンスでSoTA更新。そしてさすがの学習データとコードも公開

テクニカルレポート: https://github.com/allenai/olmocr/blob/main/olmOCR-2-Unit-Test-Rewards-for-Document-OCR.pdf

果たして日本語は…SFT Datasetのtop5にjaはなかったように見える

所見:

Loading…

demoを試した見たが日本語スライドでも非常に性能が良い

DeepSeekOCRとの比較:

Loading…



Paper/Blog Link My Issue
#Article #ComputerVision #NLP #SmallModel #MultiLingual #OpenWeight #VisionLanguageModel #OCR Issue Date: 2025-10-22 Comment

100+言語のdots.ocr benchと呼ばれるものでの性能も報告されているが、日本語性能はどのくらいなのだろうか

MIT Licence

参考:VLMを使った多言語ドキュメントパーサ「dots.ocr」を試す, kun432, Zenn
https://zenn.dev/kun432/scraps/b91fce6fbeb30c

日本語もかなりいけてそう




Paper/Blog Link My Issue
#Article #ComputerVision #NLP #LanguageModel #MultiLingual #read-later #Selected Papers/Blogs #Encoder-Decoder #OCR #Reference Collection Issue Date: 2025-10-20 Comment

元ポスト:

Loading…

英語と中国語では使えそうだが、日本語では使えるのだろうか?p.17 Figure11を見ると100言語に対して学習したと書かれているように見える。

所見:

Loading…

所見:

Loading…

OCRベンチマーク:
- [Paper Note] OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations, Linke Ouyang+, CVPR'25, 2024.12

(DeepSeek-OCRの主題はOCRの性能向上というわけではないようだが)

所見:

Loading…

所見+ポイント解説:

Loading…

所見:

Loading…

textxをimageとしてエンコードする話は以下の2023年のICLRの研究でもやられているよというポスト:
- [Paper Note] Language Modelling with Pixels, Phillip Rust+, ICLR'23, 2022.07

Loading…

関連:
- [Paper Note] Text or Pixels? It Takes Half: On the Token Efficiency of Visual Text Inputs in Multimodal LLMs, Yanhong Li+, arXiv'25, 2025.10
- [Paper Note] PixelWorld: Towards Perceiving Everything as Pixels, Zhiheng Lyu+, arXiv'25, 2025.01

関連:

Loading…

関連:
- [Paper Note] Glyph: Scaling Context Windows via Visual-Text Compression, Jiale Cheng+, arXiv'25, 2025.10

literature:

Loading…


上記ポストでは本研究はこれらliteratureを完全に無視し “an initial investigation into the feasibility of compressing long contexts via optical 2D mapping.” と主張しているので、先行研究を認識し引用すべきだと述べられているようだ。

karpathy氏のポスト:

Loading…

Loading…



Paper/Blog Link My Issue
#Article #MachineTranslation #NLP #LanguageModel #AIAgents #RAG(RetrievalAugmentedGeneration) #Mathematics #SmallModel #OpenWeight #Japanese Issue Date: 2025-09-26 Comment

blog: https://www.liquid.ai/blog/introducing-liquid-nanos-frontier-grade-performance-on-everyday-devices

モデルファミリーに350Mの日英翻訳モデルが含まれている…だと!?

タスクスペシフィックなedgeデバイス向けのSLM群。

以下のようなモデルファミリー。非構造テキストからのデータ抽出、日英翻訳、RAG, tooluse, Math, フランス語のチャットモデル。これまでマルチリンガルに特化したMTとかはよく見受けられたが、色々なタスクのSLMが出てきた。
image

元ポスト:

Loading…

LFM2はこちら:
- Introducing LFM2: The Fastest On-Device Foundation Models on the Market, LiquidAI, 2025.07