KnowledgeEditing

#Pocket #NLP #LanguageModel #ConceptErasure
Issue Date: 2025-08-26 [Paper Note] CRISP: Persistent Concept Unlearning via Sparse Autoencoders, Tomer Ashuach+, arXiv'25 SummaryCRISPは、LLMにおける持続的な概念の忘却を実現するためのパラメータ効率の良い手法であり、スパースオートエンコーダ(SAE)を用いて有害な知識を効果的に除去します。実験により、CRISPはWMDPベンチマークの忘却タスクで従来の手法を上回り、一般的およびドメイン内の能力を保持しつつ、ターゲット特徴の正確な抑制を達成することが示されました。 Comment元ポスト:https://x.com/aicia_solid/status/1960181627549884685?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #FactualKnowledge #meta-learning
Issue Date: 2025-06-17 [Paper Note] PropMEND: Hypernetworks for Knowledge Propagation in LLMs, Zeyu Leo Liu+, arXiv'25 SummaryPropMENDは、LLMsにおける知識伝播を改善するためのハイパーネットワークベースのアプローチである。メタ学習を用いて、注入された知識がマルチホップ質問に答えるために伝播するように勾配を修正する。RippleEditデータセットで、難しい質問に対して精度がほぼ2倍向上し、Controlled RippleEditデータセットでは新しい関係やエンティティに対する知識伝播を評価。PropMENDは既存の手法を上回るが、性能差は縮小しており、今後の研究で広範な関係への知識伝播が求められる。 Comment元ポスト:https://x.com/zeyuliu10/status/1934659512046330057?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q従来のKnowledge Editing手法は新たな知識を記憶させることはできる(i.e., 注入した知識を逐語的に生成できる;東京は日本の首都である。)が、知識を活用することは苦手だった(i.e., 日本の首都の気候は?)ので、それを改善するための手法を提案している模様。

既存手法のlimitationは
・editing手法で学習をする際に知識を伝搬させるデータが無く
・目的関数がraw textではなく、QA pairをSFTすること

によって生じるとし、

・学習時にpropagation question(Figure1のオレンジ色のQA; 注入した知識を活用して推論が必要なQA)を用意しどのように知識を伝搬(活用)させるかを学習し
・目的関数をCausal Language Modeling Loss

にすることで改善する、とのこと。

image
image

non-verbatimなQA(注入された知識をそのまま回答するものではなく、何らかの推論が必要なもの)でも性能が向上。
imageベースライン:
・643
・2055
#MachineLearning #Pocket #NLP #LanguageModel #ICML
Issue Date: 2025-06-10 [Paper Note] Representation Shattering in Transformers: A Synthetic Study with Knowledge Editing, Kento Nishi+, ICML'25 Summary知識編集(KE)アルゴリズムは、モデルの重みを変更して不正確な事実を更新するが、これがモデルの事実の想起精度や推論能力に悪影響を及ぼす可能性がある。新たに定義した合成タスクを通じて、KEがターゲットエンティティを超えて他のエンティティの表現に影響を与え、未見の知識の推論を歪める「表現の破壊」現象を示す。事前訓練されたモデルを用いた実験でもこの発見が確認され、KEがモデルの能力に悪影響を及ぼす理由を明らかにするメカニズム仮説を提供する。 Comment元ポスト:https://x.com/kento_nishi/status/1932072335726539063?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q

#Pocket #NLP #LanguageModel #Library Issue Date: 2025-05-11 EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models, Ziwen Xu+, arXiv'25 Summary本論文では、LLMの挙動を制御するためのフレームワーク「EasyEdit2」を提案。安全性や感情、個性などの介入をサポートし、使いやすさが特徴。ユーザーは技術的知識なしでモデルの応答を調整可能。新しいアーキテクチャにより、ステアリングベクトルを自動生成・適用するモジュールを搭載。実証的なパフォーマンスを報告し、ソースコードやデモも公開。 Commentgithub:https://github.com/zjunlp/EasyEdit/tree/main #Pocket #NLP #LanguageModel #ICLR Issue Date: 2025-04-30 AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models, Junfeng Fang+, ICLR'25 SummaryAlphaEditは、LLMsの知識を保持しつつ編集を行う新しい手法で、摂動を保持された知識の零空間に投影することで、元の知識を破壊する問題を軽減します。実験により、AlphaEditは従来の位置特定-編集手法の性能を平均36.7%向上させることが確認されました。 Comment元ポスト:https://x.com/hillbig/status/1917343444810489925?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-QOpenReview:https://openreview.net/forum?id=HvSytvg3JhMLPに新たな知識を直接注入する際に(≠contextに含める)既存の学習済みの知識を破壊せずに注入する手法(破壊しないことが保証されている)を提案しているらしい将来的には、LLMの1パラメータあたりに保持できる知識量がわかってきているので、MLPの零空間がN GBのモデルです、あなたが注入したいドメイン知識の量に応じて適切な零空間を持つモデルを選んでください、みたいなモデルが公開される日が来るのだろうか。 #Pocket #NLP #LanguageModel #ConceptErasure #AISTATS Issue Date: 2025-04-03 Fundamental Limits of Perfect Concept Erasure, Somnath Basu Roy Chowdhury+, AISTATS'25 Summary概念消去は、性別や人種などの情報を消去しつつ元の表現を保持するタスクであり、公平性の達成やモデルのパフォーマンスの解釈に役立つ。従来の技術は消去の堅牢性を重視してきたが、有用性とのトレードオフが存在する。本研究では、情報理論的視点から概念消去の限界を定量化し、完璧な消去を達成するためのデータ分布と消去関数の制約を調査。提案する消去関数が理論的限界を達成し、GPT-4を用いたデータセットで既存手法を上回ることを示した。 Comment元ポスト:https://x.com/somnathbrc/status/1907463419105570933?s=46&t=Y6UuIHB0Lv0IpmFAjlc2-Q #Pocket #NLP #LanguageModel #Library #ACL Issue Date: 2025-05-11 EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models, Peng Wang+, ACL'24, (System Demonstrations) SummaryEasyEditは、LLMsのための使いやすい知識編集フレームワークであり、さまざまな知識編集アプローチをサポート。LlaMA-2の実験結果では、信頼性と一般化の面で従来のファインチューニングを上回ることを示した。GitHubでソースコードを公開し、Google Colabチュートリアルやオンラインシステムも提供。 Commentver2.0:
・1946
#Pocket #NLP #Dataset #LanguageModel #EMNLP #read-later Issue Date: 2025-05-07 Editing Large Language Models: Problems, Methods, and Opportunities, Yunzhi Yao+, EMNLP'24 SummaryLLMの編集技術の進展を探求し、特定のドメインでの効率的な動作変更と他の入力への影響を最小限に抑える方法を論じる。モデル編集のタスク定義や課題を包括的にまとめ、先進的な手法の実証分析を行う。また、新しいベンチマークデータセットを構築し、評価の向上と持続的な問題の特定を目指す。最終的に、編集技術の効果に関する洞察を提供し、適切な方法選択を支援する。コードとデータセットは公開されている。 #Pocket #LanguageModel #Supervised-FineTuning (SFT) #ACL Issue Date: 2025-01-06 Forgetting before Learning: Utilizing Parametric Arithmetic for Knowledge Updating in Large Language Models, Shiwen Ni+, ACL'24 SummaryF-Learningという新しいファインチューニング手法を提案し、古い知識を忘却し新しい知識を学習するためにパラメトリック算術を利用。実験により、F-LearningがフルファインチューニングとLoRAファインチューニングの知識更新性能を向上させ、既存のベースラインを上回ることを示した。LoRAのパラメータを引き算することで古い知識を忘却する効果も確認。 CommentFinetuningによって知識をアップデートしたい状況において、ベースモデルでアップデート前の該当知識を忘却してから、新しい知識を学習することで、より効果的に知識のアップデートが可能なことを示している。

古い知識のデータセットをK_old、古い知識から更新された新しい知識のデータセットをK_newとしたときに、K_oldでベースモデルを{Full-finetuning, LoRA}することで得たパラメータθ_oldを、ベースモデルのパラメータθから(古い知識を忘却することを期待して)減算し、パラメータθ'を持つ新たなベースモデルを得る。その後、パラメータθ'を持つベースモデルをk_newでFull-Finetuningすることで、新たな知識を学習させる。ただし、このような操作は、K_oldがベースモデルで学習済みである前提であることに注意する。学習済みでない場合はそもそも事前の忘却の必要がないし、減算によってベースモデルのコアとなる能力が破壊される危険がある。

image

結果は下記で、先行研究よりも高い性能を示している。注意点として、ベースモデルから忘却をさせる際に、Full Finetuningによってθ_oldを取得すると、ベースモデルのコアとなる能力が破壊されるケースがあるようである。一方、LoRAの場合はパラメータに対する影響が小さいため、このような破壊的な操作となりづらいようである。
image評価で利用されたデータセット:
・2556
・2557
#Pocket #NLP #LanguageModel #ACL Issue Date: 2025-01-06 Learning to Edit: Aligning LLMs with Knowledge Editing, Yuxin Jiang+, ACL'24 Summary「Learning to Edit(LTE)」フレームワークを提案し、LLMsに新しい知識を効果的に適用する方法を教える。二段階プロセスで、アライメントフェーズで信頼できる編集を行い、推論フェーズでリトリーバルメカニズムを使用。四つの知識編集ベンチマークでLTEの優位性と堅牢性を示す。 #Pocket #NLP #LanguageModel #ICLR Issue Date: 2023-05-04 Mass-Editing Memory in a Transformer, Kevin Meng+, N_A, ICLR'23 Summary大規模言語モデルを更新することで、専門的な知識を追加できることが示されているしかし、これまでの研究は主に単一の関連付けの更新に限定されていた本研究では、MEMITという方法を開発し、多数のメモリを直接言語モデルに更新することができることを実験的に示したGPT-J(6B)およびGPT-NeoX(20B)に対して数千の関連付けまでスケーリングでき、これまでの研究を桁違いに上回ることを示したコードとデータはhttps://memit.baulab.infoにあります。 #Pocket #Dataset #NeurIPS Issue Date: 2025-08-26 [Paper Note] Locating and Editing Factual Associations in GPT, Kevin Meng+, NeurIPS'22 Summary自回帰型トランスフォーマー言語モデルにおける事実の関連付けの保存と想起を分析し、局所的な計算に対応することを示した。因果介入を用いて事実予測に関与するニューロンを特定し、フィードフォワードモジュールの役割を明らかにした。Rank-One Model Editing(ROME)を用いて特定の事実の関連付けを更新し、他の方法と同等の効果を確認。新しいデータセットに対する評価でも特異性と一般化を両立できることを示した。中間層のフィードフォワードモジュールが事実の関連付けに重要であり、モデル編集の実行可能性を示唆している。 #Pocket #NLP #LanguageModel #ICLR Issue Date: 2025-06-18 [Paper Note] Fast Model Editing at Scale, Eric Mitchell+, ICLR'22 SummaryMEND(モデル編集ネットワーク)は、事前学習モデルの動作を迅速かつ局所的に編集するための手法で、単一の入力-出力ペアを用いて勾配分解を活用します。これにより、10億以上のパラメータを持つモデルでも、1台のGPUで短時間でトレーニング可能です。実験により、MENDが大規模モデルの編集において効果的であることが示されました。 CommentOpenReview:https://openreview.net/forum?id=0DcZxeWfOPt #Analysis #Pocket #NLP #Transformer #ACL #Admin'sPick #FactualKnowledge #Encoder Issue Date: 2024-07-11 Knowledge Neurons in Pretrained Transformers, Damai Dai+, N_A, ACL'22, 2022.05 Summary大規模な事前学習言語モデルにおいて、事実知識の格納方法についての研究を行いました。具体的には、BERTのfill-in-the-blank cloze taskを用いて、関連する事実を表現するニューロンを特定しました。また、知識ニューロンの活性化と対応する事実の表現との正の相関を見つけました。さらに、ファインチューニングを行わずに、知識ニューロンを活用して特定の事実知識を編集しようと試みました。この研究は、事前学習されたTransformers内での知識の格納に関する示唆に富んでおり、コードはhttps://github.com/Hunter-DDM/knowledge-neuronsで利用可能です。 Comment1108 日本語解説: https://speakerdeck.com/kogoro/knowledge-neurons-in-pretrained-transformers-for-snlp2022関連:
・2140上記資料によると、特定の知識を出力する際に活性化する知識ニューロンを特定する手法を提案。MLMを用いたclozeタスクによる実験で[MASK]部分に当該知識を出力する実験をした結果、知識ニューロンの重みをゼロとすると性能が著しく劣化し、値を2倍にすると性能が改善するといった傾向がみられた。 ケーススタディとして、知識の更新と、知識の削除が可能かを検証。どちらとも更新・削除がされる方向性[^1]へモデルが変化した。

また、知識ニューロンはTransformerの層の深いところに位置している傾向にあり、異なるrelationを持つような関係知識同士では共有されない傾向にある模様。

[^1]: 他の知識に影響を与えず、完璧に更新・削除できたわけではない。知識の更新・削除に伴いExtrinsicな評価によって性能向上、あるいはPerplexityが増大した、といった結果からそういった方向性へモデルが変化した、という話
#Pocket #NLP #LanguageModel #EMNLP Issue Date: 2025-06-18 [Paper Note] Editing Factual Knowledge in Language Models, Nicola De Cao+, EMNLP'21 SummaryKnowledgeEditorは、事前学習された言語モデルの知識を編集し、再学習なしで誤った事実や予測を修正する手法です。制約最適化を用いてハイパーネットワークを訓練し、他の知識に影響を与えずに事実を修正します。BERTとBARTのモデルでその有効性を示し、特定のクエリに基づく予測変更がパラフレーズにも一貫して影響を与えることを確認しました。ハイパーネットワークは、知識操作に必要なコンポーネントを特定する「プローブ」として機能します。 #NeuralNetwork #ComputerVision #MachineLearning #Pocket #NLP #ICLR #read-later Issue Date: 2025-05-07 Editable Neural Networks, Anton Sinitsin+, ICLR'20 Summary深層ニューラルネットワークの誤りを迅速に修正するために、Editable Trainingというモデル非依存の訓練手法を提案。これにより、特定のサンプルの誤りを効率的に修正し、他のサンプルへの影響を避けることができる。大規模な画像分類と機械翻訳タスクでその有効性を実証。 Comment(おそらく)Knowledge Editingを初めて提案した研究OpenReview:https://openreview.net/forum?id=HJedXaEtvS