Science
[Paper Note] Training AI Co-Scientists Using Rubric Rewards, Shashwat Goel+, arXiv'25, 2025.12
Paper/Blog Link My Issue
#Pocket #NLP #ReinforcementLearning #AIAgents #ScientificDiscovery #Rubric-based Issue Date: 2025-12-31 GPT Summary- AI共同科学者は研究計画を生成するツールとして登場しているが、既存の言語モデルは制約に従った計画生成に苦労している。本研究では、研究論文のコーパスを活用し、研究目標と評価基準を自動抽出して訓練コーパスを構築。自己評価による強化学習を用いてモデルを訓練し、専門家による評価でファインチューニングされたモデルが初期モデルよりも好まれる結果を得た。医療論文へのアプローチ拡張でも改善が見られ、スケーラブルな訓練方法の可能性を示唆している。 Comment
元ポスト:
ポイント解説:
[Paper Note] Paper2Video: Automatic Video Generation from Scientific Papers, Zeyu Zhu+, arXiv'25, 2025.10
Paper/Blog Link My Issue
#ComputerVision #Pocket #NLP #SpeechProcessing #VideoGeneration/Understandings #VisionLanguageModel #TTS #4D (Video) #TextToVideoGeneration Issue Date: 2025-11-29 GPT Summary- Paper2Videoは、研究論文から学術プレゼンテーション動画を自動生成するための新しいベンチマークとフレームワークを提案。101の研究論文に基づくデータセットを用い、動画生成のための評価指標を設計。PaperTalkerは、スライド生成や字幕、音声合成を統合し、効率的な生成を実現。実験により、提案手法が既存の方法よりも情報量が多く、忠実な動画を生成することを示した。データセットやコードは公開されている。 Comment
pj page: https://showlab.github.io/Paper2Video/
元ポスト:
[Paper Note] ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows, Qiushi Sun+, arXiv'25, 2025.05
Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #AIAgents #Evaluation #MultiModal #Reasoning #SoftwareEngineering #ComputerUse #read-later #Selected Papers/Blogs #VisionLanguageModel Issue Date: 2025-10-26 GPT Summary- 大規模言語モデル(LLMs)を活用したScienceBoardを紹介。これは、科学的ワークフローを加速するための動的なマルチドメイン環境と、169の厳密に検証されたタスクからなるベンチマークを提供。徹底的な評価により、エージェントは複雑なワークフローでの信頼性が低く、成功率は15%にとどまることが明らかに。これにより、エージェントの限界を克服し、より効果的な設計原則を模索するための洞察が得られる。 Comment
元ポスト:
[Paper Note] DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis, Liana Patel+, arXiv'25
Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #Evaluation #read-later #Selected Papers/Blogs #DeepResearch #Live Issue Date: 2025-08-31 GPT Summary- 生成的研究合成の評価のために、DeepScholar-benchというライブベンチマークと自動評価フレームワークを提案。これは、ArXiv論文からクエリを引き出し、関連研究セクションを生成する実際のタスクに焦点を当て、知識合成、検索品質、検証可能性を評価。DeepScholar-baseは強力なベースラインを確立し、他の手法と比較して競争力のあるパフォーマンスを示した。DeepScholar-benchは依然として難易度が高く、生成的研究合成のAIシステムの進歩に重要であることを示す。 Comment
leaderboard: https://guestrin-lab.github.io/deepscholar-leaderboard/leaderboard/deepscholar_bench_leaderboard.html
元ポスト:
[Paper Note] Intern-S1: A Scientific Multimodal Foundation Model, Lei Bai+, arXiv'25
Paper/Blog Link My Issue
#Pocket #NLP #LanguageModel #OpenWeight #MoE(Mixture-of-Experts) #read-later #VisionLanguageModel Issue Date: 2025-08-23 GPT Summary- Intern-S1は、科学専門分野に特化したオープンソースの専門家型モデルで、280億の活性化パラメータを持つマルチモーダルMixture-of-Experts(MoE)モデルです。5Tトークンで事前学習され、特に科学データに焦点を当てています。事後学習では、InternBootCampを通じて強化学習を行い、Mixture-of-Rewardsを提案。評価では、一般的な推論タスクで競争力を示し、科学分野の専門的なタスクでクローズドソースモデルを上回る性能を達成しました。モデルはHugging Faceで入手可能です。 Comment
元ポスト:
scientific domainに特化したデータで継続事前学習+RL Finetuningしたドメイン特化言語モデルらしい。
HF:
https://huggingface.co/internlm/Intern-S1
Apache 2.0ライセンス
ベースモデルはQwen3とInternViT
- InternViT:
https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5
関連:
- [Paper Note] InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks, Zhe Chen+, CVPR'24
解説:
サマリ:
[Paper Note] MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning, Run-Ze Fan+, arXiv'25
Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #Evaluation #Reasoning #PostTraining #Contamination-free Issue Date: 2025-07-23 GPT Summary- 科学的推論のためのオープンデータセット「TextbookReasoning」を提案し、65万の推論質問を含む。さらに、125万のインスタンスを持つ「MegaScience」を開発し、各公開科学データセットに最適なサブセットを特定。包括的な評価システムを構築し、既存のデータセットと比較して優れたパフォーマンスを示す。MegaScienceを用いてトレーニングしたモデルは、公式の指示モデルを大幅に上回り、科学的調整におけるスケーリングの利点を示唆。データキュレーションパイプラインやトレーニング済みモデルをコミュニティに公開。 Comment
元ポスト:
LLMベースでdecontaminationも実施している模様
Evaluating AI’s ability to perform scientific research tasks, OpenAI, 2025.12
Paper/Blog Link My Issue
#Article #NLP #Dataset #LanguageModel #Evaluation #Reasoning #KeyPoint Notes Issue Date: 2025-12-17 Comment
元ポスト:
HF: https://huggingface.co/datasets/openai/frontierscience
physics, chemistry, biologyの分野の専門家が作成した問題によって構成されるPh.D levelの新たなscientificドメインのベンチマークとのこと。OlympiadとResearchの2種類のスプリットが存在し、Olympiadは国際オリンピックのメダリストによって設計された100問で構成され回答は制約のある短答形式である一方、Researchは博士課程学生・教授・ポスドク研究者などのPh.Dレベルの人物によって設計された60個の研究に関連するサブタスクによって構成されており、10点満点のルーブリックで採点される、ということらしい。
公式アナウンスではGPT-5.2がSoTAでResearchの性能はまだまだスコアが低そうである。
Project AELLA: Custom LLMs to process 100 Million Research Papers, ssam Hogan, 2025.11
Paper/Blog Link My Issue
#Article #DocumentSummarization #NLP #LanguageModel #GenerativeAI #Blog Issue Date: 2025-11-12 Comment
100M+の論文に対してAIによる要約を作成し構造化した上でvisualizeすることでよりscientificな情報へのアクセシビリティを高めたい、という話に見える