Workshop


Paper/Blog Link My Issue
#NLP #AIAgents #Planning #Prompting #Reasoning #IJCAI #IdeaGeneration Issue Date: 2025-08-30 Comment

元ポスト:

Loading…

Patentからmarket-readyなプロダクトのコンセプトを生成し評価するタスク(PBIG)に取り組んでいる。
Reasoningモデルはコストとレスポンスの遅さから利用せず(iterationを重ねることを重視)、LLMのアシストを受けながらpromptを何度もhuman in the loopでiterationしながら品質を高めていくアプローチをとり、リーダーボードで1st placeを獲得した模様。




Paper/Blog Link My Issue
#Pocket #NLP #LanguageModel #ReinforcementLearning #Reasoning #ICML #One-Line Notes Issue Date: 2025-05-27 GPT Summary- 本研究では、外部の報酬やラベルなしで大規模言語モデル(LLMs)が学習できるフレームワーク「内部フィードバックからの強化学習(RLIF)」を提案。自己確信を報酬信号として用いる「Intuitor」を開発し、無監視の学習を実現。実験結果は、Intuitorが数学的ベンチマークで優れた性能を示し、ドメイン外タスクへの一般化能力も高いことを示した。内因的信号が効果的な学習を促進する可能性を示唆し、自律AIシステムにおけるスケーラブルな代替手段を提供。 Comment

元ポスト:

Loading…

おもしろそう

externalなsignalをrewardとして用いないで、モデル自身が内部的に保持しているconfidenceを用いる。人間は自信がある問題には正解しやすいという直感に基づいており、openendなquestionのようにそもそも正解シグナルが定義できないものもあるが、そういった場合に活用できるようである。

self-trainingの考え方に近いのでは

ベースモデルの段階である程度能力が備わっており、post-trainingした結果それが引き出されるようになったという感じなのだろうか。

参考:

Loading…

解説スライド: https://www.docswell.com/s/DeepLearning2023/KYVLG4-2025-09-18-112951
元ポスト:

Loading…



Paper/Blog Link My Issue
#Pocket #NLP #LanguageModel #ICML #Tokenizer #KeyPoint Notes #Byte-level Issue Date: 2025-01-02 GPT Summary- Byte Latent Transformer(BLT)は、バイトレベルのLLMアーキテクチャで、トークン化ベースのLLMと同等のパフォーマンスを実現し、推論効率と堅牢性を大幅に向上させる。BLTはバイトを動的にサイズ変更可能なパッチにエンコードし、データの複雑性に応じて計算リソースを調整する。最大8Bパラメータと4Tトレーニングバイトのモデルでの研究により、固定語彙なしでのスケーリングの可能性が示された。長いパッチの動的選択により、トレーニングと推論の効率が向上し、全体的にBLTはトークン化モデルよりも優れたスケーリングを示す。 Comment

興味深い

図しか見れていないが、バイト列をエンコード/デコードするtransformer学習して複数のバイト列をパッチ化(エントロピーが大きい部分はより大きなパッチにバイト列をひとまとめにする)、パッチからのバイト列生成を可能にし、パッチを変換するのをLatent Transformerで学習させるようなアーキテクチャのように見える。

また、予算によってモデルサイズが決まってしまうが、パッチサイズを大きくすることで同じ予算でモデルサイズも大きくできるのがBLTの利点とのこと。
image
image

日本語解説: https://bilzard.github.io/blog/2025/01/01/byte-latent-transformer.html?v=2

OpenReview: https://openreview.net/forum?id=UZ3J8XeRLw




Paper/Blog Link My Issue
#Pocket #ICML Issue Date: 2025-07-15 GPT Summary- 分散最適化アルゴリズム「DiLoCo」を提案し、接続が不十分なデバイスでのLLMトレーニングを可能にする。DiLoCoは、通信量を500分の1に抑えつつ、完全同期の最適化と同等の性能をC4データセットで発揮。各ワーカーのデータ分布に対して高いロバスト性を持ち、リソースの変動にも柔軟に対応可能。 Comment

openreview: https://openreview.net/forum?id=pICSfWkJIk&referrer=%5Bthe%20profile%20of%20MarcAurelio%20Ranzato%5D(%2Fprofile%3Fid%3D~MarcAurelio_Ranzato1)




Paper/Blog Link My Issue
#Pocket #NLP #LanguageModel #NeurIPS #Interpretability Issue Date: 2023-05-20 GPT Summary- 本研究では、LLMのブラックボックス性を解消するために、テキストモジュールに対する自然言語の説明を自動生成する手法「Summarize and Score(SASC)」を提案。SASCは、モジュールの選択性に関する説明とその信頼性スコアを提供する。合成モジュール、BERTモデル、fMRIデータに対して評価し、真の説明の回復や内部検査、脳マッピングへの応用の可能性を示した。結果とコードはGithubで公開。 Comment

モデルのinterpretabilityに関するMSの新たな研究




Paper/Blog Link My Issue
#Pocket #NLP #CommentGeneration #Personalization #ACL Issue Date: 2019-09-11 GPT Summary- ソーシャルメディアの多様なコメント生成の難しさを考慮し、ユーザーのプロフィールに基づくパーソナライズされたコメント生成タスク(AGPC)を提案。パーソナライズドコメント生成ネットワーク(PCGN)を用いて、ユーザーの特徴をモデル化し、外部ユーザー表現を考慮することで自然で人間らしいコメントを生成することに成功した。

Paper/Blog Link My Issue
#RecommenderSystems #NeuralNetwork #NaturalLanguageGeneration #Pocket #NLP #ReviewGeneration #ACL Issue Date: 2019-08-17 GPT Summary- ソーシャルメディアの多様なコメント生成の難しさを考慮し、ユーザープロフィールに基づくパーソナライズされたコメント生成タスク(AGPC)を提案。パーソナライズドコメント生成ネットワーク(PCGN)を用いて、ユーザーの特徴をモデル化し、外部ユーザー表現を考慮することで自然なコメントを生成。実験結果は、モデルの効果を示す。

Paper/Blog Link My Issue
#MachineLearning #Pocket #NLP #Dataset #ReinforcementLearning #Evaluation #IJCAI #Game #text Issue Date: 2025-10-26 GPT Summary- TextWorldは、テキストベースのゲームにおける強化学習エージェントのトレーニングと評価のためのサンドボックス環境であり、ゲームのインタラクティブなプレイを処理するPythonライブラリを提供します。ユーザーは新しいゲームを手作りまたは自動生成でき、生成メカニズムによりゲームの難易度や言語を制御可能です。TextWorldは一般化や転移学習の研究にも利用され、ベンチマークゲームのセットを開発し、いくつかのベースラインエージェントを評価します。 Comment

リポジトリ: https://github.com/microsoft/TextWorld




Paper/Blog Link My Issue
#RecommenderSystems #Novelty #WI #KeyPoint Notes Issue Date: 2017-12-28 Comment

・評価をしていない

・通常のItem-based collaborative filteringの結果に加えて,taxonomyのassociation rule mining (あるtaxonomy t1に興味がある人が,t2にも興味がある確率を獲得する)を行い,このassociation rule miningの結果をCFと組み合わせて,noveltyのある推薦をしようという話(従来のHybrid Recommender Systemsでは,contents-basedの手法を使うときはitem content similarityを使うことが多い.まあこれはよくあるcontents-basedなアプローチだろう).

・documentの中のどの部分がnovelなのかとかを同定しているわけではない.taxonomyの観点からnovelだということ.