mid-training


Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #Evaluation #Reasoning #Proprietary #DeepResearch #KeyPoint Notes #Rubric-based Issue Date: 2025-12-24 GPT Summary- Step-DeepResearchは、LLMを用いた自律エージェントのためのコスト効率の良いエンドツーエンドのシステムであり、意図認識や長期的意思決定を強化するためのデータ合成戦略を提案。チェックリストスタイルのジャッジャーにより堅牢性を向上させ、中国ドメイン向けのADR-Benchを設立。実験では、Step-DeepResearchが高いスコアを記録し、業界をリードするコスト効率で専門家レベルの能力を達成したことを示した。 Comment

元ポスト:

Loading…

ポイント解説:

Loading…


ざっくり言うと、シンプルなReAct styleのagentで、マルチエージェントのオーケストレーションや複雑で重たいワークフロー無しで、OpenAI, GeminiのDeepResearchと同等の性能を達成してとり、ポイントとしてこれらの機能をはmid-training段階で学習してモデルのパラメータとして組み込むことで実現している模様。

mid trainingは2段階で構成され、trajectoryの長さは徐々に長いものを利用するカリキュラム方式。
最初のステージでは以下の4つのatomicスキルを身につけさせる:
- Planning & Task Decomposition
- Deep Information Seeking
- Reflection & Verification
- Reporting

これらのatomic skillを身につけさせる際には、next token predictionをnext action predictionという枠組みで学習し、アクションに関するトークンの空間を制限することで効率性を向上(ただし、具体性は減少するのでトレードオフ)という形にしているようだが、コンセプトが記述されているのみでよくわからない。同時に、学習データの構築方法もデータソースとおおまかな構築方法が書かれているのみである。ただし、記述内容的には各atomicmskilvごとに基本的には合成データが作成され利用されていると考えてよい。

たとえばplanningについては論文などの文献のタイトルや本文から実験以後の記述を除外し、研究プロジェクトのタスクを推定させる(リバースエンジニアリングと呼称している)することで、planningのtrajectoryを合成、Deep Information SeekingではDB Pediaなどのknowledge graphをソースとして利用し、字数が3--10程度のノードをseedとしそこから(トピックがドリフトするのを防ぐために極端に次数が大きいノードは除外しつつ)幅優先探索をすることで、30--40程度のノードによって構成されるサブグラフを構成し、そのサブグラフに対してmulti hopが必要なQuestionを、LLMで生成することでデータを合成しているとのこと。

RLはrewardとしてルーブリックをベースにしたものが用いられるが、strong modelを用いての三つ組データを合成し、このデータを用いてSFT, RLVRをすることでRubrics Judgeモデルを学習して利用すると記述されている。Rubricsに基づく報酬では、最初に
- 1: fully satisfied
- 0.5: partially satisfied
- 0: not satisfied

の3値を検討したが、partially satisfiedが人間による評価とのagreementが低かったため設計を変更し、positive/negative rubricsを設定し、positivルーブリックの場合はルーブリックがfully satisfiedの時のみ1, negativeルーブリックの方はnot satisfiedの時のみ0とすることで、低品質な生成結果に基づくrewardを無くし、少しでもネガティブな要素があった場合は強めのペナルティがかかるようにしているとのこと(ルーブリックの詳細は私が見た限りは不明である。Appendix Aに書かれているように一瞬見えたが具体的なcriterionは書かれていないように見える)。

関連:
- [Paper Note] SFR-DeepResearch: Towards Effective Reinforcement Learning for Autonomously Reasoning Single Agents, Xuan-Phi Nguyen+, arXiv'25




Paper/Blog Link My Issue
#EfficiencyImprovement #Pretraining #Pocket #NLP #LanguageModel #MoE(Mixture-of-Experts) #SoftwareEngineering #PostTraining #One-Line Notes Issue Date: 2025-12-19 GPT Summary- SonicMoEは、MoEモデルのフォワードおよびバックワードパスをメモリ効率良く計算するアルゴリズムを提案し、活性化メモリを45%削減。Hopper GPU上で7B MoEモデルの計算スループットを1.86倍改善し、トレーニングスループットは2130億トークン/日を達成。新しいトークンラウンディング手法により、カーネル実行時間で1.16倍のスピードアップを実現。すべてのカーネルはオープンソース化され、MoEモデルのトレーニングを加速。 Comment

元ポスト:

Loading…

MoEモデルの学習速度、メモリ使用が最大2倍効率化される実装らしい。ただしHopperに特化している模様。




Paper/Blog Link My Issue
#Pretraining #Pocket #NLP #LanguageModel #Alignment #Supervised-FineTuning (SFT) #ReinforcementLearning #Reasoning #Distillation #OpenWeight #PostTraining #read-later #Selected Papers/Blogs Issue Date: 2025-12-13 GPT Summary- Nanbeige4-3Bは、23兆の高品質トークンで事前学習し、3000万以上の指示でファインチューニングされた高性能な小規模言語モデルです。FG-WSDトレーニングスケジューラを用いて段階的にデータを洗練し、SFTデータの質向上のために共同メカニズムを設計しました。さらに、DPDメソッドを通じてモデルを蒸留し、強化学習フェーズで推論能力を強化しました。評価結果は、同等のパラメータスケールのモデルを大幅に上回り、より大きなモデルにも匹敵することを示しています。モデルのチェックポイントは、https://huggingface.co/Nanbeige で入手可能です。 Comment

元ポスト:

Loading…

3Bモデルにも関わらず10倍以上大きいモデルと同等以上の性能を発揮し、trainingのstrategyが非常に重要ということが伺える。元ポストにも各学習方法の概要が記載されているが、読みたい。




Paper/Blog Link My Issue
#Analysis #Pretraining #Pocket #NLP #LanguageModel #ReinforcementLearning #PostTraining #read-later #Selected Papers/Blogs #PRM #KeyPoint Notes #Reference Collection Issue Date: 2025-12-09 GPT Summary- 強化学習(RL)が言語モデルの推論能力を向上させるかどうかを検証するため、事前トレーニング、中間トレーニング、RLの因果的寄与を分離する実験フレームワークを開発。RLは事前トレーニングが十分な余地を残す場合にのみ真の能力向上をもたらし、文脈的一般化には適切な事前トレーニングが必要であることを示した。また、中間トレーニングがRLよりもパフォーマンスを向上させ、プロセスレベルの報酬が推論の忠実性を高めることを明らかにした。これにより、推論LMトレーニング戦略の理解と改善に寄与する。 Comment

元ポスト:

Loading…

RLはモデルの能力を精錬させる(=事前学習時に既に身についているreasoningパターンを(探索空間を犠牲により少ない試行で良い応答に辿り着けるよう)増幅させる;サンプリング効率を向上させる)と主張する研究たちと
- [Paper Note] Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?, Yang Yue+, NeurIPS'25, 2025.04
- [Paper Note] The Invisible Leash: Why RLVR May Not Escape Its Origin, Fang Wu+, arXiv'25
- [Paper Note] Spurious Rewards: Rethinking Training Signals in RLVR, Shao+, 2025.05
- [Paper Note] Demystifying Long Chain-of-Thought Reasoning in LLMs, Edward Yeo+, arXiv'25

RLは事前学習で身につけたreasoning能力を超えてさらなるgainを得ることができる
- [Paper Note] Reinforcement Learning with Verifiable Rewards Implicitly Incentivizes Correct Reasoning in Base LLMs, Xumeng Wen+, arXiv'25, 2025.06
- From f(x) and g(x) to f(g(x)): LLMs Learn New Skills in RL by Composing Old Ones, Yuan+, 2025.09
- [Paper Note] On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning Language Models, Charlie Zhang+, arXiv'25, 2025.12

という対立する主張がliteratureで主張されているが、これは学習環境が制御されたものでないことに起因しており(=何が事前学習で既に獲得されていて、事後学習後に新規で獲得された能力なのか、既存の能力の精錬なのか弁別がつかない)、かつ最近のmid-trainingの隆盛([Paper Note] OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling, Zengzhi Wang+, arXiv'25 )を鑑みたときに、事前・中間・事後学習は互いにどのように作用しているのか?という疑問に応えることは重要であり、そのためのフレームワークを提案し分析した、という話な模様。非常に興味深い。takeawayはabstに書かれている通りなようだが、読みたい。

フレームワークは事前・中間・事後学習の個々の貢献を独立して測定できるフレームワークであり、
- 完全に制御された(明示的なアトミックなoperationに基づく)合成reasoningタスク

あとで書く

著者ポスト:

Loading…


takeaway1の話は、最近のRLにおける動的な難易度調整にも絡んでくる知見に見える。
takeaway2,3のRLはatomic skillを追加で学習することはできず、compositional skillを学習しcontextual generalizationを実現する、同等のbadgetの元でmid training+RLがpure RLよりも性能改善する、というのは特に興味深く、事後学習の効用を最大化するためにも事前・中間学習が(以前から言われていた通り)重要であることが示唆される。
takeaway4のPRMがreasoningのfidelityを高めるという話は、DeepSeek-V3.2でも観測されている話であり、本研究によってそれが完全に制御された実験の元示されたことになる。

RQ: 実データにおいて、事前学習時点だとPerplexityかdownstream taskの性能をwatchすると思うのだが、それらを通じてatomic skillをLLMがどれだけ身に付けられているか、というのはどれだけ測れているのだろうか、あるいはより良い方法はあるのだろうか

- [Paper Note] Emergent Hierarchical Reasoning in LLMs through Reinforcement Learning, Haozhe Wang+, arXiv'25

(=RLの序盤は低レベルな手続的な実行(計算や公式)を習得し、その後高レベルな戦略的なplanningの学習が生じる)とはどのような関係があるだろうか。

解説:

Loading…

所見:

Loading…

解説:

Loading…



Paper/Blog Link My Issue
#EfficiencyImprovement #Pretraining #Pocket #NLP #LanguageModel #SoftwareEngineering #PostTraining #Parallelism Issue Date: 2025-10-25 GPT Summary- 非同期階層ゼロ並列処理(AsyncHZP)を提案し、シンプルさとメモリ効率を保ちながら、トレーニング効率を向上。従来のZeROの通信オーバーヘッドを削減し、パラメータや勾配の再シャーディングを適応的に行う。マルチストリーム非同期スケジューリングにより通信と計算を重ね合わせ、メモリの断片化を最小限に抑える。DenseおよびMixture-of-Expertsモデルでの評価により、AsyncHZPが従来のND並列処理を上回る性能を示した。 Comment

元ポスト:

Loading…



Paper/Blog Link My Issue
#Pocket #NLP #LanguageModel #read-later #LatentReasoning #RecurrentModels #RecursiveModels Issue Date: 2025-10-15 GPT Summary- ETD手法を用いて、LLMの推論能力を向上させる。特定の層を反復することで、17の推論ベンチマークで大幅な精度向上を達成。GSM8Kで28.4%、MATHで36%の向上を示し、再帰的な推論が効果的であることを確認。 Comment

元ポスト:

Loading…



Paper/Blog Link My Issue
#Pocket #NLP #LanguageModel #Supervised-FineTuning (SFT) #ReinforcementLearning #AIAgents #Self-SupervisedLearning #SelfCorrection #Selected Papers/Blogs #WorldModels #KeyPoint Notes Issue Date: 2025-10-14 GPT Summary- 言語エージェントの目標は、経験を通じて学び、複雑なタスクで人間を上回ることですが、強化学習には報酬の欠如や非効率的なロールアウトが課題です。これに対処するため、エージェント自身の行動から生成された相互作用データを用いる「早期経験」という新たなパラダイムを提案します。このデータを基に、(1) 暗黙の世界モデル化と(2) 自己反省の2つの戦略を研究し、8つの環境で評価を行った結果、効果性と一般化が向上することを示しました。早期経験は、強化学習の基盤を提供し、模倣学習と経験駆動エージェントの橋渡しとなる可能性があります。 Comment

元ポスト:

Loading…

LLM AgentのためのWarmup手法を提案している。具体的にはRLVRやImitation LearningによってRewardが定義できるデータに基づいてこれまではRLが実現されてきたが、これらはスケールせず、Rewardが定義されない環境のtrajectoryなどは学習されないので汎化性能が低いという課題がある。このため、これらのsupervisionつきの方法で学習をする前のwarmup手法として、reward-freeの学習パラダイム Early Experienceを提案している。
image

手法としてはシンプルな手法が2種類提案されている。
### Implicit World Modeling (IWM, 式(3)):
ある状態s_i において action a_i^{j}を (1 < j < |K|)をとった時の状態をs_i^{j}としたときに、(s_i, a_i^{j}, s_i^{j}) の3つ組を考える。これらはポリシーからのK回のrolloutによって生成可能。
このときに、状態sを全てテキストで表現するようにし、言語モデルのnext-token-prediction lossを用いて、ある状態s_jにおいてaction a_i^{k} をとったときに、s_j^{k} になることを予測できるように学習する。これにより例えばブックフライトのサイトで誤った日時を入れてしまった場合や、どこかをクリックしたときにどこに遷移するかなどの学習する環境の世界知識をimplicitにモデルに組み込むことができる。

### Self-Reflection(式4)
もう一つのパラダイムとして、専門家によるアクション a_i によって得られた状態 s_i と、それら以外のアクション a_i^{j} によって得られた状態 s_i^{j}が与えられたときに、s_iとs_i^{j}を比較したときに、なぜ a_i の方がa_i^{j} よりも好ましいかを説明するCoT C_i^{j}を生成し、三つ組データ(s_i, a_i^{j}, c_i^{j}) を構築する。このデータを用いて、状態s_iがgivenなときに、a_i に c_i^{j} をconcatしたテキストを予測できるようにnext-token-prediction lossで学習する。また、このデータだけでなく汎化性能をより高めるためにexpertによるimitation learningのためのデータCoTなしのデータもmixして学習をする。これにより、expertによるactionだけで学習するよりも、なぜexpertのアクションが良いかという情報に基づいてより豊富で転移可能な学習シグナルを活用し学習することができる。

image

この結果、downstreamタスクでのperformanceが単にImitation Learningを実施した場合と比較して提案手法でwarmupした方が一貫して向上する。また、5.4節にpost-trainingとして追加でGRPOを実施した場合も提案手法によるwarmupを実施した場合が最終的な性能が向上することが報告されている。

image

IWMは自己教師あり学習の枠組みだと思われるので、よぬスケールし、かつ汎化性能が高く様々な手法のベースとなりうる手法に見える。

著者ポスト:

Loading…



Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #ReinforcementLearning #NeurIPS #PostTraining #GenerativeVerifier Issue Date: 2025-10-12 GPT Summary- 強化学習を用いた新しいトレーニングパラダイム「General-Reasoner」を提案し、LLMの推論能力を向上させる。大規模な高品質データセットを構築し、生成モデルベースの回答検証器を開発。物理学や化学などの多様な分野で評価し、既存手法を上回る性能を示す。 Comment

元ポスト:

Loading…

pj page: https://tiger-ai-lab.github.io/General-Reasoner/




Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #ReinforcementLearning #PostTraining Issue Date: 2025-10-12 GPT Summary- Webscale-RLパイプラインを導入し、大規模な事前学習文書から数百万の多様な質問-回答ペアを生成。これにより、120万の例を含むWebscale-RLデータセットを構築。実験結果、RLトレーニングは継続的な事前トレーニングよりも効率的で、パフォーマンスを大幅に向上させることを示した。研究は、RLを事前学習レベルにスケールアップする道筋を示し、より高性能な言語モデルの実現を可能にする。 Comment

元ポスト:

Loading…

Dataset: https://huggingface.co/datasets/Salesforce/Webscale-RL

以下の研究が関連研究でNeurIPSですでに発表されているが引用も議論もされていないという指摘がある:
- [Paper Note] General-Reasoner: Advancing LLM Reasoning Across All Domains, Xueguang Ma+, arXiv'25, 2025.05

他にも似たようなモチベーションの研究を見たことがあるような…




Paper/Blog Link My Issue
#Pocket #NLP #Dataset #LanguageModel #Coding #COLM #Editing #One-Line Notes Issue Date: 2025-10-08 Comment

openreview: https://openreview.net/forum?id=sy71y74U80#discussion

openreviewのサマリによると、8B tokens, 850k python filesのデータセットで、コーディングタスクを、ゴールで条件づけられたsequential editsタスクとみなし The Stack上のコードを分析ツールとLLMによって合成されたrationaleによってフィルタリング/拡張したデータを提供しているとのこと。具体的には (state, goal, action_i) の3つ組みのデータセットであり、action_iがaction前後でのdiffになっている模様。D3データセットでSFTの前にLlama 1B / 3Bをmid-trainingした結果、downstreamタスク(コード生成、completion、編集)において性能が向上したとのこと。

image




Paper/Blog Link My Issue
#EfficiencyImprovement #Pocket #NLP #LanguageModel #ReinforcementLearning #Reasoning Issue Date: 2025-09-26 GPT Summary- 大規模推論モデルの進展は強化学習によって促進され、CoTデータの利用が推論の深さを向上させることが示されている。しかし、どのデータタイプが最も効果的かは未解決の問題である。本研究では、推論ポテンシャルを独立した試行の数の逆数として定義し、これを拡張するために高価値の推論パターンを用いた多様なデータの利用を提案。具体的には、CoTシーケンスから原子的な推論パターンを抽象化し、コアリファレンスセットを構築。二重粒度アルゴリズムを用いて高価値のCoTデータを効率的に選択し、モデルの推論能力を向上させる。10BトークンのCoTPデータにより、85A6B Mixture-of-ExpertsモデルはAIME 2024および2025で9.58%の改善を達成した。 Comment

元ポスト:

Loading…

細かいところは読めていないのだが、学習データの中から高品質な推論パターンを持つものを選んで学習に使いたいというモチベーション。そのためにまず価値の高い推論パターンを含むコアセットを作り、コアセットと類似した推論パターンや、推論中のトークンのエントロピー列を持つサンプルを学習データから収集するみたいな話な模様。類似度は重みつきDynamic Time Warping (DTW)で、原始的な推論パターンの系列とエントロピー系列のDTWの線型結合によっめ求める。原始的な推論パターンのアノテーションや、CoT sequence中のトークンのエントロピー列はDeepSeek-V3によって生成する。

コアセットを作るためには、問題タイプや問題の難易度に基づいて人手で問題を選び、それらに対してstrong reasoning modelでCoTを生成。各CoTに対して(おそらく)DeepSeek-V3でreasoningのパターン(パターンは原始的なCoTパターンの系列で構成される)をアノテーションし、各パターンに対してTF-IDFによって重要度を決定する。最終的に、問題に正答しているサンプルについて、人手で高品質でdiscriminativeなCoTパターンを持つものを選択し、各CoTパターンに重みをつけた上でコアセットを作成した、みたいな感じに見える。




Paper/Blog Link My Issue
#NLP #LanguageModel #Coding #OpenWeight #PostTraining #Selected Papers/Blogs #WorldModels #One-Line Notes Issue Date: 2025-09-25 GPT Summary- 320億パラメータのCode World Model (CWM)をリリースし、コード生成のための世界モデルの研究を進める。静的コードだけでなく、PythonインタプリタやDocker環境から得た観測-行動トレジェクトリで中間トレーニングを実施し、マルチタスク推論RLによる広範な能力を評価。CWMは強力なテストベッドを提供し、世界モデルがエージェンティックコーディングに貢献できることを示す。主要なタスクで高いパフォーマンスを記録し、モデルチェックポイントも提供。 Comment

元ポスト:

Loading…

World Modelと銘打ってあるが、一般的なCV分野でのWorld Modelではなく、python やbash等の実行をトークン列として仮想的にトレースできるようにmid trainingされている(大量の実トレースデータが利用されている模様)ので、World Modelと銘打たれている模様?

image

GRPOに対するモダンなtweakがまとまっている模様:

Loading…


DeepSeek-R1で提案されてから細かな調整が重ねられて来た。



Paper/Blog Link My Issue
#Pretraining #Pocket #NLP #LanguageModel #SmallModel #PostTraining #read-later #Selected Papers/Blogs #DataMixture Issue Date: 2025-09-13 GPT Summary- 本研究では、推論能力の出現に必要なデータ量について再検討し、約2Tトークンの高品質データで強力な推論モデルが構築できることを示した。MobileLLM-R1というサブビリオンパラメータのモデルは、従来のモデルを大幅に上回る性能を発揮し、特にAIMEスコアで優れた結果を示した。さらに、Qwen3の36Tトークンコーパスに対しても、わずか11.7%のトークンでトレーニングされたMobileLLM-R1-950Mは、複数の推論ベンチマークで競争力を持つ。研究の詳細な情報は公開されている。 Comment

元ポスト:

Loading…

モデルカードを見ると、optimizerやスケジューリング、ハイパーパラメータの設定、pre/mid/post trainingにおける学習データとDavaMixについて簡潔に記述されており、レシピが公開されているように見える。素晴らしい。

関連:
- [Paper Note] MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases, Zechun Liu+, ICLR'24, 2024.02




Paper/Blog Link My Issue
#Pretraining #Pocket #NLP #Dataset #LanguageModel #SyntheticData #Coding #Mathematics #COLM Issue Date: 2025-07-10 GPT Summary- MegaMathは、数学に特化したオープンデータセットで、LLMの数学的推論能力を向上させるために作成された。ウェブデータの再抽出、数学関連コードの特定、合成データの生成を通じて、371Bトークンの高品質なデータを提供し、既存のデータセットを上回る量と品質を実現した。 Comment

元ポスト:

Loading…

非常に大規模な数学の事前学習/mid-training向けのデータセット

CommonCrawlのHTMLから、さまざまなフィルタリング処理(reformatting, 2 stageのHTML parserの活用(片方はnoisyだが高速、もう一方は高性能だが遅い), fasttextベースの分類器による抽出, deduplication等)を実施しMegaMath-Webを作成、また、MegaMathWebをさらに分類器で低品質なものをフィルタリングし、LLMによってノイズ除去、テキストのreorganizingを実施し(≠ピュアな合成データ)継続事前学習、mid-training向けの高品質なMegaMath-Web-Proを作成。

MegaMathCodeはThe Stack V2 ([Paper Note] StarCoder 2 and The Stack v2: The Next Generation, Anton Lozhkov+, arXiv'24 ) をベースにしており、mathematical reasoning, logic puzzles, scientific computationに関するコードを収集。まずこれらのコードと関連が深い11のプログラミング言語を選定し、そのコードスニペットのみを対象とする。次にstrong LLMを用いて、数学に関するrelevanceスコアと、コードの品質を0--6のdiscrete scoreでスコアリングし学習データを作成。作成した学習データでSLMを学習し大規模なフィルタリングを実施することでMegaMath-Codeを作成。

最後にMegaMath-{Web, code}を用いて、Q&A, code data, text&code block dataの3種類を合成。Q&Aデータの合成では、MegaMath-WebからQAペアを抽出し、多様性とデータ量を担保するためQwen2.5-72B-Instruct, Llama3.3-70B-Instructの両方を用いて、QAのsolutionを洗練させる(reasoning stepの改善, あるいはゼロから生成する[^1])ことで生成。また、code dataでは、pythonを対象にMegaMath-Codeのデータに含まれるpython以外のコードを、Qwen2.5-Coder-32B-Instructと、Llamd3.1-70B-Instructによってpythonに翻訳することでデータ量を増やした。text&code blockデータでは、MegaMath-Webのドキュメントを与えて、ブロックを生成(タイトル、数式、結果、コードなど[^1])し、ブロックのverificationを行い(コードが正しく実行できるか、実行結果とanswerが一致するか等)、verifiedなブロックを残すことで生成。

image

image

image

[^1]: この辺は論文の記述を咀嚼して記述しており実サンプルを見ていないので少し正しい認識か不安




Paper/Blog Link My Issue
#ComputerVision #Pretraining #Pocket #NLP #Supervised-FineTuning (SFT) #ReinforcementLearning #MultiModal #RLHF #Reasoning #LongSequence #RewardHacking #PostTraining #CurriculumLearning #RLVR #Selected Papers/Blogs #VisionLanguageModel Issue Date: 2025-07-03 GPT Summary- 視覚言語モデルGLM-4.1V-Thinkingを発表し、推論中心のトレーニングフレームワークを開発。強力な視覚基盤モデルを構築し、カリキュラムサンプリングを用いた強化学習で多様なタスクの能力を向上。28のベンチマークで最先端のパフォーマンスを達成し、特に難しいタスクで競争力のある結果を示す。モデルはオープンソースとして公開。 Comment

元ポスト:

Loading…

Qwen2.5-VLよりも性能が良いVLM
image

アーキテクチャはこちら。が、pretraining(データのフィルタリング, マルチモーダル→long context継続事前学習)->SFT(cold startへの対処, reasoning能力の獲得)->RL(RLVRとRLHFの併用によるパフォーマンス向上とAlignment, RewardHackingへの対処,curriculum sampling)など、全体の学習パイプラインの細かいテクニックの積み重ねで高い性能が獲得されていると考えられる。
image




Paper/Blog Link My Issue
#Analysis #Pocket #NLP #LanguageModel #ReinforcementLearning #PostTraining #read-later #Selected Papers/Blogs Issue Date: 2025-06-27 GPT Summary- 異なるベース言語モデル(LlamaやQwen)の強化学習(RL)における挙動を調査し、中間トレーニング戦略がRLのダイナミクスに与える影響を明らかに。高品質の数学コーパスがモデルのパフォーマンスを向上させ、長い連鎖的思考(CoT)がRL結果を改善する一方で、冗長性や不安定性を引き起こす可能性があることを示す。二段階の中間トレーニング戦略「Stable-then-Decay」を導入し、OctoThinkerモデルファミリーを開発。オープンソースのモデルと数学推論コーパスを公開し、RL時代の基盤モデルの研究を支援することを目指す。 Comment

元ポスト:

Loading…

mid-trainingの観点から、post trainingにおけるRLがスケーリングする条件をsystematicallyに調査している模様

論文中にはmid-training[^1]の定義が記述されている:

image

[^1]: mid-trainingについてはコミュニティの間で厳密な定義はまだ無くバズワードっぽく使われている、という印象を筆者は抱いており、本稿は文献中でmid-trainingを定義する初めての試みという所感




Paper/Blog Link My Issue
#Article #Analysis #NLP #LanguageModel #ChatGPT #Reasoning #SelfCorrection #One-Line Notes Issue Date: 2025-12-28 Comment

元ポスト:

Loading…

Is there seahorse emoji?という質問に対するLLMのreasoning trajectoryと、self correctionの挙動が、OpenAIのどの時点のモデルで出現するか、しないかを線引くことで、mid-trainingにself correction形式のデータが追加されたのがいつ頃なのかを考察している。




Paper/Blog Link My Issue
#Article #MachineTranslation #NLP #LanguageModel #OpenWeight #Catastrophic Forgetting #Selected Papers/Blogs #In-Depth Notes #Surface-level Notes Issue Date: 2025-09-01 Comment

テクニカルレポート: https://github.com/Tencent-Hunyuan/Hunyuan-MT/blob/main/Hunyuan_MT_Technical_Report.pdf

元ポスト:

Loading…

Base Modelに対してまず一般的な事前学習を実施し、その後MTに特化した継続事前学習(モノリンガル/パラレルコーパスの利用)、事後学習(SFT, GRPO)を実施している模様。
継続事前学習では、最適なDataMixの比率を見つけるために、RegMixと呼ばれる手法を利用。Catastrophic Forgettingを防ぐために、事前学習データの20%を含めるといった施策を実施。

SFTでは2つのステージで構成されている。ステージ1は基礎的な翻訳力の強化と翻訳に関する指示追従能力の向上のために、Flores-200の開発データ(33言語の双方向の翻訳をカバー)、前年度のWMTのテストセット(English to XXをカバー)、Mandarin to Minority, Minority to Mandarinのcuratedな人手でのアノテーションデータ、DeepSeek-V3-0324での合成パラレルコーパス、general purpose/MT orientedな指示チューニングデータセットのうち20%を構成するデータで翻訳のinstructinoに関するモデルの凡化性能を高めるためキュレーションされたデータ、で学習している模様。パラレルコーパスはReference-freeな手法を用いてスコアを算出し閾値以下の低品質な翻訳対は除外している。ステージ2では、詳細が書かれていないが、少量でよりfidelityの高い約270kの翻訳対を利用した模様。また、先行研究に基づいて、many-shotのin-context learningを用いて、訓練データをさらに洗練させたとのこと(先行研究が引用されているのみで詳細な記述は無し)。また、複数の評価ラウンドでスコアの一貫性が無いサンプルは手動でアノテーション、あるいはverificationをして品質を担保している模様。

RLではGRPOを採用し、rewardとしてsemantic([Paper Note] xCOMET: Transparent Machine Translation Evaluation through Fine-grained Error Detection, Nuno M. Guerreiro+, TACL'24 ), terminology([Paper Note] TAT-R1: Terminology-Aware Translation with Reinforcement Learning and Word Alignment, Zheng Li+, arXiv'25 ; ドメイン特有のterminologyを捉える), repetitionに基づいたrewardを採用している。最終的にSFT->RLで学習されたHuayuan-MT-7Bに対して、下記プロンプトを用いて複数のoutputを統合してより高品質な翻訳を出力するキメラモデルを同様のrewardを用いて学習する、といったpipelineになっている。

image

image

関連:
- Large Language Models Are State-of-the-Art Evaluators of Translation Quality, EAMT'23
- [Paper Note] xCOMET: Transparent Machine Translation Evaluation through Fine-grained Error Detection, Nuno M. Guerreiro+, TACL'24
- [Paper Note] CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task, Rei+, WMT'22
- [Paper Note] No Language Left Behind: Scaling Human-Centered Machine Translation, NLLB Team+, arXiv'22
- [Paper Note] Many-Shot In-Context Learning, Rishabh Agarwal+, NeurIPS'24
- [Paper Note] RegMix: Data Mixture as Regression for Language Model Pre-training, Qian Liu+, ICLR'25
- [Paper Note] TAT-R1: Terminology-Aware Translation with Reinforcement Learning and Word Alignment, Zheng Li+, arXiv'25

関連: PLaMo翻訳
- PLaMo Translate: 翻訳特化大規模言語モデルの開発,今城+, Jxiv'25

こちらはSFT->Iterative DPO->Model Mergeを実施し、翻訳に特化した継続事前学習はやっていないように見える。一方、SFT時点で独自のテンプレートを作成し、語彙の指定やスタイル、日本語特有の常体、敬体の指定などを実施できるように翻訳に特化したテンプレートを学習している点が異なるように見える。Hunyuanは多様な翻訳の指示に対応できるように学習しているが、PLaMo翻訳はユースケースを絞り込み、ユースケースに対する性能を高めるような特化型のアプローチをとるといった思想の違いが伺える。